

VHDL: Modular Design and Synthesis
of Cores and Systems

http://dx.doi.org/10.1036/0071475451

About the Author

Dr. Zainalabedin Navabi is a professor of electrical and computer
engineering at Northeastern University. Dr. Navabi is the author of
several textbooks and computer-based trainings on VHDL, Verilog,
and related tools and environments. Dr. Navabi’s involvement with
hardware description languages began in 1976 when he started the
development of a register-transfer level simulator for one of the very
first Hardware Description Languages (HDLs). In 1981 he completed
the development of a synthesis tool that generated MOS layout from
an RTL description. Since 1981, Dr. Navabi has been involved in the
design, definition, and implementation of HDLs. He has written nu-
merous papers on the application of HDLs in simulation, synthesis,
and test of digital systems. He started one of the first full HDL
courses at Northeastern University in 1990. Since then he has con-
ducted many short courses and tutorials on this subject in the United
States and abroad. In addition to being a professor, he is also a con-
sultant to Electronic Design Automation (EDA) companies. Dr.
Navabi received his M.S. and Ph.D. from the University of Arizona in
1978 and 1981, and his B.S. from the University of Texas at Austin in
1975. He is a senior member of IEEE, and a member of IEEE Com-
puter Society, ASEE, and ACM. Dr. Navabi is the author of eight
books on various aspects of digital system design automation.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

VHDL: Modular Design and
Synthesis of Cores and Systems

Zainalabedin Navabi, Ph.D.
Professor of Electrical and Computer Engineering

Northeastern University
Boston, Massachusetts

Third Edition

New York Chicago San Francisco Lisbon London Madrid
Mexico City Milan New Delhi San Juan Seoul

Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071475451

Copyright © 2007 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United
States of America. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

0-07-150892-9

The material in this eBook also appears in the print version of this title: 0-07-147545-1.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the
benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETE-
NESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or
guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or
anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or
inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause
arises in contract, tort or otherwise.

DOI: 10.1036/0071475451

http://dx.doi.org/10.1036/0071475451

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0071475451

In the memory of my father, Mohammad-Hossein Navabi.

This page intentionally left blank

vii

CONTENTS

Preface xv
Introduction xvii
Acknowledgments xix

CHAPTERS

1 Digital System Design Automation with VHDL1
1.1 Abstraction Levels..2
1.2 System Level Design Flow...3

1.2.1 Hardware/Software Partitioning3
1.2.2 Hardware Part ...4
1.2.3 Software Part ...5

1.3 RTL Design Flow..5
1.3.1 Design Entry ..6
1.3.2 Testbench in VHDL ...7
1.3.3 Design Validation ..8
1.3.4 Compilation and Synthesis ...10
1.3.5 Timing Analysis ...13
1.3.6 Post-Synthesis Simulation ..14
1.3.7 Hardware Generation..14

1.4 VHDL ..14
1.4.1 VHDL Initiation...14
1.4.2 Existing Languages ...15
1.4.3 VHDL Requirements ...17
1.4.4 The VHDL Language...20

1.5 Summary ..21
Problems ...21
Suggested Reading...22

For more information about this title, click here

http://dx.doi.org/10.1036/0071475451

viii Contents

2 RTL Design with VHDL ..23
2.1 Basic Structures of VHDL ...24

2.1.1 Entities and Architectures ..25
2.1.2 Entity-Architecture Outline..27
2.1.3 Entity Ports..28
2.1.4 Signals and Variables..29
2.1.5 Logic Value System..31
2.1.6 Resolutions ...32

2.2 Combinational Circuits..33
2.2.1 Gate Level Combinational Circuits34
2.2.2 Gate Level Synthesis ...36
2.2.3 Descriptions by Use of Equations38
2.2.4 Instantiating Other Modules ..43
2.2.5 Synthesis of Assignment Statements44
2.2.6 Descriptions with Sequential Flow.................................45
2.2.7 Combinational Rules ...49
2.2.8 Bussing ...49
2.2.9 Synthesizing Procedural Blocks......................................50

2.3 Sequential Circuits ..52
2.3.1 Basic Memory Elements at the Gate Level....................52
2.3.2 Memory Elements Using Procedural Statements54
2.3.3 Flip-flop Synthesis ...57
2.3.4 Registers, Shifters and Counters....................................59
2.3.5 Synthesis of Shifters and Counters61
2.3.6 State Machine Coding ...62
2.3.7 State Machine Synthesis...64
2.3.8 Memories ..65

2.4 Writing Testbenches ..65
2.5 Synthesis Issues ...68
2.6 VHDL Essential Terminologies...68

2.6.1 Design ...68
2.6.2 Analysis ..68
2.6.3 Library..69
2.6.4 Standard Packages ..69
2.6.5 Elaboration...70
2.6.6 Event Driven Simulation ..70
2.6.7 Concurrency ...70
2.6.8 Concurrent Bodies ...70
2.6.9 Sequentiality ..70
2.6.10 Sequential Bodies ..71
2.6.11 VHDL Objects and Classes ...71
2.6.12 Real Time ...72
2.6.13 Delta Delay...72
2.6.14 Scheduling..73
2.6.15 Resolution...73

Contents ix

2.6.16 Code Formal ...73
2.7 Summary ..73
Problems ...73
Suggested Reading...76

3 VHDL Constructs for Structure and Hierarchy Descriptions...77
3.1 Basic Components ..77

3.1.1 Basic Model ..78
3.2 Component Instantiations...80

3.2.1 Direct Instantiation ...81
3.2.2 Component Instantiation ..81

3.3 Iterative Networks ...84
3.3.1 Multi-bit Vectors ..85
3.3.2 Multi-instance Generations ..85
3.3.3 Simplified Generations..87

3.4 Binding Alternatives..87
3.5 Association Methods ..89
3.6 Generic Parameters ...90

3.6.1 Using Generic Default Values...91
3.6.2 Generic Map Aspect...92
3.6.3 Generic Association List..93

3.7 Design Configuration ...94
3.7.1 Basic Configuration Declaration.....................................94
3.7.2 Incremental Configuration..96
3.7.3 Configuring Nested Components....................................97
3.7.4 Indexing Block Configurations99
3.7.5 Instantiating a Design Unit ..100

3.8 Design Simulation..101
3.9 Summary ..102
Problems ...103
Suggested Reading...104

4 Concurrent Constructs for RT Level Descriptions105
4.1 Concurrent Signal Assignments105

4.1.1 Simple Assignments ..106
4.1.2 Conditional Signal Assignment107
4.1.3 Selected Signal Assignment ..109

4.2 Guarded Signal Assignments ..111
4.2.1 GUARD Signal and Expression111
4.2.2 Block Statement...112
4.2.3 Block Statement Ports...113
4.2.4 Nested Block Statements ..114
4.2.5 Guarded Signals...115
4.2.6 Timing Disconnections ..118

4.3 Summary ..120

x Contents

Problems ...120
Suggested Reading...122

5 Sequential Constructs for RT Level Descriptions123
5.1 Process Statement..123

5.1.1 Declarative Part of a Process ..124
5.1.2 Statement Part of a Process..125
5.1.3 Process Sensitivity List ...127
5.1.4 Postponed Processes ..129
5.1.5 Passive Processes...131

5.2 Sequential Wait Statements ...132
5.3 VHDL Subprograms...135

5.3.1 Function Definition..135
5.3.2 Procedure Definition..137
5.3.3 Language Aspects of Subprograms...............................140
5.3.4 Nesting Subprograms..140

5.4 VHDL Library Structure ...143
5.4.1 Creating Libraries ...143
5.4.2 Using Libraries ..144

5.5 Packaging Utilities and Components144
5.5.1 A Package of Utilities ..145
5.5.2 A Package of Components ...147

5.6 Sequential Statements...150
5.6.1 If Statement ...150
5.6.2 Loop Statement..151
5.6.3 Case Statement..153
5.6.4 Assertion Statement ..154

5.7 Summary ..156
Problems ...156
Suggested Reading...160

6 VHDL Language Utilities and Packages161
6.1 Type Declarations and Usage..161

6.1.1 Enumeration Type for Multi-Value Logic161
6.1.2 Using Real Numbers..165
6.1.3 Type Conversions...166
6.1.4 Physical Types..167
6.1.5 Array Declarations...170
6.1.6 File Type and External File I/O....................................181

6.2 VHDL Operators ..186
6.2.1 Logical Operators...186
6.2.2 Relational Operators ...187
6.2.3 Shift Operators...188
6.2.4 Adding Operators...189
6.2.5 Sign Operators ...189

Contents xi

6.2.6 Multiplying Operators ...189
6.2.7 Other Operators...190
6.2.8 Aggregate Operation..190

6.3 Operator and Subprogram Overloading190
6.3.1 Operator Overloading..191
6.3.2 Subprogram Overloading ..193

6.4 Other Types and Type-Related Issues..............................194
6.4.1 Subtypes ...194
6.4.2 Record Types ..195
6.4.3 Alias Declaration ...197
6.4.4 Access Types...198
6.4.5 Global Objects ..202
6.4.6 Type Conversions...203
6.4.7 Standard Nine-Value Logic...204

6.5 Predefined Attributes ..205
6.5.1 Array Attributes ..205
6.5.2 Type Attributes ..206
6.5.3 Signal Attributes..208
6.5.4 Entity Attributes..213
6.5.5 User-Defined Attributes..214

6.6 Standard Libraries and Packages.....................................216
6.6.1 STANDARD Package ..216
6.6.2 TEXTIO Package and ASCII I/O217
6.6.3 Std_logic_1164 Package...220
6.6.4 Std_logic_arith Package ..222

6.7 Summary ..223
Problems ...223
Suggested Reading...225

7 VHDL Signal Model ..227
7.1 Characterizing Hardware Languages...............................227

7.1.1 Timing and Concurrency of Operations227
7.2 Signal Assignments..230

7.2.1 Inertial Delay Mechanism...231
7.2.2 Transport Delay Mechanism...232
7.2.3 Comparing Inertial and Transport232

7.3 Concurrent and Sequential Assignments.........................233
7.3.1 Concurrent Assignments...233
7.3.2 Events and Transactions...234
7.3.3 Delta Delay...238
7.3.4 Sequential Placement of Transactions242

7.4 Multiple Concurrent Drivers...255
7.4.1 Resolving between Multiple Driving Values................255
7.4.2 Resolutions with Guarded Assignments262
7.4.3 Resolving INOUT Signals ...266

xii Contents

7.4.4 Standard Resolution ..268
7.5 Summary ..268
Problems ...269
Suggested Reading...272

8 Hardware Cores and Models...273
8.1 Synthesis Rules and Styles..273

8.1.1 Combinational Cores ...274
8.1.2 Sequential Cores ..278
8.1.3 Finite State Machines ...283

8.2 Memory and Queue Structures ...292
8.2.1 Generic RAM Core ...292
8.2.2 Synthesizable Push-Pop Stack......................................294
8.2.3 Synthesizable Circular FIFO ..297
8.2.4 Dynamic Access Type FIFO ..301

8.3 Arithmetic Cores ..305
8.3.1 Array Multiplier...306
8.3.2 Carry-Lookahead Adder ..308
8.3.3 Synthesizable Booth Multiplier311

8.4 Components with Separate Control and Data Parts314
8.4.1 Sequential Multiplier ..314
8.4.2 von Neumann Computer Model322

8.5 Summary ..334
Problems ...335
Suggested Reading...340

9 Core Design Test and Testability ...341
9.1 Issues Related to Design Test ...341

9.1.1 Design Test...342
9.1.2 Testbench ...342
9.1.3 Coverage ...342

9.2 Simple Testbenches..343
9.2.1 Combinational Circuit Testing343
9.2.2 Sequential Circuit Testing ..345

9.3 Testbench Techniques..346
9.3.1 Arbitrary Test Data ...347
9.3.2 Random Test Data ...348
9.3.3 Applying Synchronized Data ..351
9.3.4 Synchronized Display of Results...................................352
9.3.5 Displaying Interval Objects ..353
9.3.6 An Interactive Testbench ..355
9.3.7 Queued Data Application ..358
9.3.8 Text File Stimuli and Response....................................359

9.4 Complete System Testing ..361
9.4.1 Multiplier Testing..361

Contents xiii

9.4.2 Processor Testing...365
9.5 Issues Related to Manufacturing Test..............................371

9.5.1 Manufacturing Test ...371
9.5.2 Fault Model ..371
9.5.3 Test Generation ...372
9.5.4 Fault Simulation..372
9.5.5 Fault Coverage...372
9.5.6 Testability ..372

9.6 Core Test Support Modules ...373
9.6.1 LFSR...373
9.6.2 MISR...375

9.7 Scan Design and Test Application377
9.7.1 Starting Design..377
9.7.2 Scan Insertion ..379
9.7.3 Scan Testbench ..380
9.7.4 Top Level Tester ..382

9.8 Memory BIST ...383
9.8.1 Memory BIST Architecture...383
9.8.2 Test Session..385
9.8.3 BIST Controller..386
9.8.4 BIST Structure...386
9.8.5 BIST Tester ..388

9.9 Summary ..389
Problems ...389
Suggested Reading...393

10 Design, Test and Application of a Processor Core395
10.1 Design of SAYEH Processor Core395

10.1.1 Details of Processor Functionality................................396
10.1.2 SAYEH Datapath...399

10.2 SAYEH VHDL Description..401
10.2.1 Data Components ..401
10.2.2 SAYEH Datapath...409
10.2.3 SAYEH Controller ...412
10.2.4 Complete SAYEH Processor..418

10.3 SAYEH Testbench / Assembler / Memory Model419
10.3.1 Top Level VHDL Testbench ..420
10.3.2 Memory Model..421
10.3.3 Assembler ...422
10.3.4 Memory Read ...424
10.3.5 Memory Write ..425
10.3.6 Memory File Handling ..426
10.3.7 Sorting Test Program ..427

10.4 SAYEH as an Embedded Processor Core428
10.4.1 Embedded Core Based Design428

xiv Contents

10.4.2 Filter Design ..429
10.4.3 Core Based Architecture ...430
10.4.4 FIR Program ..430
10.4.5 FIR Memory and IO Maps ..432
10.4.6 Filter Software ...433

10.5 Summary ..435
Problems ...436
Suggested Reading...437

APPENDIXES

A VHDL Keywords ...439

B VHDL Language Grammar...441

C VHDL Standard Packages ...461
C.1 STANDARD Package...461
C.2 TEXTIO Package..463

D STD_LOGIC_1164 Package ...467

E STD_LOGIC_TEXTIO Package ..479

F STD_LOGIC_ARITH Package ..481

G STD_LOGIC_SIGNED...497

H STD_LOGIC_UNSIGNED..503

I math_real Package...509

Index...523

xv

PREFACE

This book is on the IEEE Standard 1076 VHDL hardware description
language and the utilization of this language for the design of modern
digital systems. The intended audiences are engineers involved in
various aspects of digital systems design and manufacturing and stu-
dents with the basic knowledge of digital system design. The empha-
sis of the book is on using VHDL for the design, test, and synthesis of
digital systems. We will discuss Register Transfer (RT) level digital
system design, and discuss how VHDL can be used in this design
flow. The book covers development, test, and utilization of configur-
able cores for RT level design. In addition, we discuss design and
utilization of a processor core for embedded system designs.

In the last few years RT level design of digital systems has gone
through significant changes. Beyond simulation and synthesis that
are now parts of any RTL design process, we are looking at testbench
generation and design validation tools and schemes. As with any book
on VHDL, this book covers digital design and VHDL for simulation
and synthesis. However, to ready design engineers for designing, test-
ing, and verifying large digital system designs, the book contains ma-
terial for testbench development and testable design.

Design strategy, digital design tools, and the role of VHDL in a
modern digital design environment are discussed in Chapter 1 of this
book. In the design strategy part we discuss where and how RT level
cores are used, what parts of a design are handled by a program run-
ning on a processor core, and what parts of a large design are coded in
an HDL like VHDL. With this multi domain design methodology, the
role of design tools and a common design representation that suits all
these domains become very important. We will show that the VHDL
language is a suitable language for representation of a design, the
components of which are described at different domains.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

xvi Preface

The introductory part of this book outlines the tools needed in a
digital design environment and discusses how these tools benefit digi-
tal designers. We will show that at the present time the majority of
designers do take advantage of simulation and synthesis tools. Be-
cause of this, the book focuses on VHDL simulation semantics and
synthesizability of designs. Design error detection by simulation is
only possible if the design is simulated with a proper testbench and
good design coverage is obtained. For this reason, the book devotes a
major chapter to the issue of testbench development. We will also dis-
cuss testable designs and develop testbenches for these designs as
well.

One of the key subjects treated in this book is the linguistics of
the VHDL, including its type oriented semantics, simulation model,
and concurrency handling. We believe, to be able to utilize VHDL be-
yond just an RTL design front-end, and keep up with the changing
technology, and to be able to find new ways of using this language for
tomorrow’s complex designs, a thorough understanding of the lan-
guage semantics and linguistics aspects of VHDL is required. This
belief is why we have devoted a major part of this book to the linguis-
tics and simulation model of VHDL.

This book covers basic VHDL for simulation and synthesis, de-
tails of language simulation semantics and syntax, configurable core
design, core testing, and processor cores and their applications. These
topics are kept separate to allow a designer interested in basic simu-
lation and synthesis to use the book for just that. On the other hand,
those who are interested in the linguistics of VHDL can use the parts
of the book that are intended for this purpose and use the book as a
complete reference. Furthermore advanced designers and test engi-
neers have their own chapters to gather their required information.

In an academic setting, in an undergraduate course the book can
be used as a design book with less emphasis on the linguistics and
language semantics, and for a graduate course the complete book
provides enough material for one semester.

 Zainalabedin Navabi
navabi@ece.neu.edu

Boston, Massachusetts
March, 2007

xvii

INTRODUCTION

Over the years, design of digital systems has evolved from transistor
level logic to RTL. In today’s technology, RT level design has reached
its level of maturity and new, more abstract design methods are being
searched for. With the present level of maturity of RTL and RT level
tools, we should go one step beyond just simulation and synthesis and
look into new ways a hardware description language like VHDL can
help designers.
 Toward this goal, and in order to prepare designers for future
design challenges, we have concentrated on two key issues. One is
that the linguistics and semantics of the VHDL are thoroughly cov-
ered. The second contribution of this book is its coverage of test-
benches and testability techniques.
 In addition to looking at the future of RTL, this book gets deep
into today’s RT level design by presenting synthesis techniques and
developing configurable cores for a core-based design environment.
The design of a general purpose processor core in the last chapter of
this book is another way to enhance RT level designs by using em-
bedded processors.

VHDL: Modular Design and Synthesis of Cores and Systems cov-
ers RTL, system level design methodology, VHDL language syntax
and semantics, HDL simulation model, design of configurable cores,
testbench and testable design description in VHDL, and processor
cores. This book can be used in an academic or industrial setting by
students or engineers. In either case it assumes a general knowledge
of logic design. The early part of this book provides enough informa-
tion for simulation and synthesis of basic RT level components. This
information is useful for continuing to design and practice the lan-
guage while more advanced topics are learned in the later chapters of
the book.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

xviii Introduction

The first two chapters cover design strategy and simulation and
synthesis of basic components. With these two chapters, readers will
be able to start writing VHDL codes and perform simulation and syn-
thesis of basic components.

The next three chapters discuss VHDL language syntax and se-
mantics at the structural, functional, and behavioral levels, respec-
tively. The chapters that follow discuss VHDL types and simulation
model. These five chapters cover VHDL from a linguistic point of
view.

After the discussion of the language, a chapter discusses config-
urable core design and another chapter talks about core testing and
testbench development. The final chapter shows design, test and
utilization of a processor core. Advanced modern designers will
greatly benefit from the last three chapters of the book.
 Chapter 1 discusses the general flow of a system level design and
the role of compilers and synthesis tools. We discuss where VHDL fits
in a modern digital design environment. A brief history of VHDL is
given in this chapter.
 Chapter 2 presents VHDL for those who want to get immediately
started with design with VHDL. A section in this chapter covers
VHDL definitions and terminologies.
 Chapters 3 to 5 cover VHDL structural, concurrent, and behav-
ioral constructs for describing RT level components.
 Chapter 6 focuses on the linguistics issues of VHDL. Issues such
as type definitions and overloading are covered here.

Chapter 7 discusses the signal and simulation model of VHDL.
Multiple concurrent assignments to signals and scheduling values for
signals are discussed here.

Chapter 8 presents VHDL descriptions for several configurable
RT level cores. Several arithmetic, memory, queue, and processor
cores are presented here.

Chapter 9 shows test techniques for RT level cores. It presents
several testbench generation techniques and several testable designs
coded in VHDL.

Chapter 10 is the last chapter of this book. This chapter shows
the RT level design of a processor core. The processor core is then
tested using methods discussed in Chapter 9. The last part of this
chapter shows design of a filter using this processor core.

ACKNOWLEDGMENTS

Several people helped me with preparation of this manuscript. My
students Ms. Elnaz Koopahi and Ms. Mahshid Sedghi wrote models
for many of the examples of Chapters 8 and 9. In addition they helped
with the review of the book and made many useful comments for im-
proving the book. Ms. Sedghi was very helpful in reviewing Chapter
10, debugging the processor model and developing a testbench for it.

Students in my VHDL class helped review the material and pro-
vided feedback on the flow of the material.

As with all my other publishing works, Ms. Fatemeh Asgari
helped me with the preparation of the manuscript. She worked with
me on the initial planning of this work, distribution of tasks during
the project, and final assembly of this book. Her planning and organi-
zation has always been a key to successful completion of such pro-
jects.

I also thank my wife, Irma Navabi, for help, encouragement, and
understanding my working habits. Such an intensive work could not
be done without the support of my wife and two sons, Arash and Ar-
vand. I thank them for this and my other scientific achievements.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

1

1Digital System Design Automation
with VHDL

The early schematic capture and design entry programs used for de-
sign of digital systems have given way to complex design entry pro-
grams utilizing software programs, hardware cores, and components
described in hardware description languages. Today’s hardware de-
signers designing complex hardware/software systems must be famil-
iar with software programming, hardware description languages, and
utilization of embedded cores for implementation of hardware and
software parts of a system. In addition, hardware designers must be
familiar with design environments utilizing software programs, HDL
hardware descriptions, and embedded processor and intellectual
property (IP) cores.
 This chapter gives an overview of the hardware design process
and the role of VHDL in a modern digital design methodology. We
begin by an overview of levels of abstraction from systems to transis-
tors. This discussion becomes useful in presenting design strategies
that are based on recursive partitioning of a design into lower ab-
straction levels. Following this, we talk about hardware/software
codesign, and discuss partitioning a design into a part that is to be
implemented using various hardware design abstractions, and a part
that is to be implemented with a software program. The section that
comes after this discussion of partitioning focuses on RT level design
that is the major abstraction level that the VHDL language is used
for. We will talk about RT level simulation, synthesis and device pro-
gramming tools, and will discuss the existing CAD tools used in this
hardware design process. The last part of this chapter gives a general
overview of the properties of the VHDL language.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

2 Chapter 1

1.1 Abstraction Levels
Digital design started with putting transistors together to implement
a given hardware function. Obviously this handcrafted method of de-
sign and flexibilities offered in choice of transistor size and routing of
wires, achieves an optimum design for a given function.
 On the other hand, as designs become more complex, this level of
design had to change to allow design of large circuits. In an evolu-
tionary process, gate level designs replaced transistor level designs.
With this move to an upper abstraction level, compromise for timing,
silicon utilization, and power consumptions had to be made. In addi-
tion, design tools were developed to help designers with utilization of
gates verification of designs, and translation to the transistor level.
 As designs became more complex, another higher abstraction
level evolved that included even less detail than the gate level. The
main focus of this level of abstraction is how transfer of data happens
between registers, logic units, and busses; and because of this, it is
referred to as register transfer level, or RTL. As in the move from
transistor level to gate level, moving from gates to RT level carries
with it compromises and tradeoffs. Furthermore, this higher level of
abstraction requires use of tools and various software and hardware
packages to aid the designer in the design process. As in the gate
level, RT level tools include those for design capture, verification, and
translation from RT level to the lower abstraction level, i.e., gate level
synthesis.
 For the same reasons that design had to go up from gate to RT
level, the time of sole RT level design had to expire, and this level of
abstraction had to give way to an upper level of abstraction, which for
now, we refer to as Electronic System Level (ESL) or just system
level. At the system level, a designer is only concerned with the func-
tionality of the system being designed, and describes the algorithm
that is going to be implemented. The algorithm is described using a
procedural language like the C language. The description at this level
does not contain clock or gate level timing.
 System level tools include design entry tools, simulators, and, of
course, hardware generation programs. Hardware generation from a
system level description can be done in one of two possible ways. As
in other abstraction levels, one way of generating hardware is to
translate a system level description to a lower level of abstraction,
i.e., RTL. Alternatively, a system level procedural description can be
compiled to run on a given processor. This alternative is possible at
the system level because the description is procedural and a software
language like C can be used for it.

The above mentioned method of hardware generation (using a
software program) from a system level description is what has be-

Digital System Design Automation with VHDL 3

come embedded system design. The former method, i.e., translation
from system to RTL, is often referred to as C synthesis, or system
level synthesis. C synthesis refers to generation of hardware from a C
program, or a procedural description. Figure 1.1 shows abstraction
levels discussed here.

Figure 1.1 Abstraction Levels

1.2 System Level Design Flow
Figure 1.2 shows a design flow that consists of hardware and soft-
ware parts. In this flow some hardware functions we implemented
with RTL coding and same other functions are implemented by pro-
grams running on processor cores. The subsections below describe the
details of this block diagram.

1.2.1 Hardware/Software Partitioning
The first step in design at the system level is to decide what parts are
to be implemented using predefined cores, RTL VHDL modules, or
discrete components, and which parts are to be implemented with a
program running on a processor core. This decision is referred to as
hardware/software partitioning. This is a manual (or semi-manual)
process, and is perhaps the most difficult system design phase.

4 Chapter 1

Figure 1.2 Hardware/Software Design Flow

 The hardware part becomes a description of various hardware
modules that are described in an HDL or are available as predefined
hardware modules. The software part is a high level C/C++ program
that after being compiled becomes the memory contents of processor
that runs the program.

1.2.2 Hardware Part
The hardware part (right flow in Figure 1.2) of a complete hard-
ware/software system may be composed of components that are de-
scribed in VHDL, IP cores or discrete parts. Using tools and design
environments, a hardware designer chooses to code parts of his or her
design in VHDL, or use parts from a library of predefined modules.
 Often a design environment provides intellectual property (IP)
cores that designers can use and integrate in their designs. Hardware
design environments also include configurable parts for commonly
used components such as arithmetic functions, register banks, and
counters.

Digital System Design Automation with VHDL 5

1.2.3 Software Part
The left flow in Figure 1.2 shows the implementation of the software
part of a system. The part of a design that is to be implemented in
software must become a machine language program in a given proc-
essor. The designer may choose to code this part in a high level lan-
guage and compile it, or directly code it in assembly or machine lan-
guage.
 All the necessary software tools and compilers are available to a
designer who uses a supported processor core. In this case, use of
C/C++ for describing the software part of a system is the most logical
choice, since compilation and debugging tools are provided for the de-
signer. On the other hand, if a designer uses his or her own processor
or a processor core that does not have a strong support, the designer
is responsible for generating the machine language of the program he
or she is implementing.
 Regardless of how the programming task is done, after the com-
pletion of the design of the software part, this part looks like any
hardware block with inputs and outputs. The inputs and outputs are
either external to the system being designed, or they are to intercon-
nect the hardware and software parts.

The sections that follow elaborate on the hardware and software
sides of the design processes depicted in Figure 1.2.

1.3 RTL Design Flow
For the design of a digital system using an automated design envi-
ronment, the design flow begins with specification of the design at
various levels of abstraction and ends with generating netlist for an
ASIC (application specific integrated circuits), layout for a custom IC,
or a program for a PLD (programmable logic devices). Figure 1.3
shows steps involved in this design flow.

In the design entry phase, a design is specified as a mixture of
behavioral VHDL code, instantiation of VHDL modules, and bus and
wire assignments. A design engineer is also responsible for generat-
ing testbenches for his or her design for verification of the design and
later for verifying the synthesis output. Design verification can be
done by simulation, assertion verification, formal verification, or a
mix of all three. After performing this design validation phase (this is
called the pre-synthesis verification), this design is taken through the
synthesis process to translate it into actual hardware of a target de-
vice. Here, target device refers to the specific field programmable
logic device (FPLD) that is being programmed, the ASIC that is being
manufactured by an outside source, or the custom IC that is being
fabricated. After the synthesis process and before the actual hard-

6 Chapter 1

ware is generated, another simulation, that is referred to as post-
synthesis simulation, is done. This simulation can take advantage of
the same testbench generated for the VHDL model of the system be-
fore it is synthesized. This way, the behavioral model of the design
and its hardware model are tested with the same data. The difference
between pre- and post-synthesis simulations is in the level of details
obtained from each simulation.

The sections that follow elaborate on each of the blocks shown in
Figure 1.3. Most VHDL based EDA environments provide blocks
shown in this figure.

1.3.1 Design Entry
The first step in the design of a digital system is the design entry
phase. In this phase, the design is described in VHDL in a top-down
hierarchical fashion. A complete design may consist of components at
the gate or transistor level, behavioral parts describing high level
functionality of a hardware module, or components described by their
bussing structure.

Because high-level VHDL designs are usually described at the
level that specifies system registers and transfer of data between reg-
isters through busses, this level of system description is referred to as
register transfer level. A complete design described as such has a
clear hardware correspondence. VHDL constructs used in an RT level
design are sequential statements, signal assignments, and instantia-
tion statements.

VHDL sequential statements are used for high level behavioral
descriptions. A system or a component is described in a sequential
fashion similar to the way processes are described in a software lan-
guage. For example, we can describe a component by checking its in-
put conditions, setting flags, waiting for events to occur, monitoring
handshaking signals, and issuing outputs. Describing a system se-
quentially, VHDL if-then, case and other software-language-like con-
structs can be used.

VHDL signal assignments are statements for representing logic
blocks, bus assignments and bus and input/output interconnect speci-
fications. Combined with Boolean and conditional assignments, these
language constructs can be used for describing components and sys-
tems in terms of their register and bus assignments.

VHDL instantiation statements are for using lower level compo-
nents in an upper level design. Instead of describing behavior, func-
tionality, or bussing of a system, we can describe a system in VHDL
in terms of its lower level components. These sub-components can be
as small as a gate or a transistor, or as large as a complete processor.

Digital System Design Automation with VHDL 7

Figure 1.3 HDL Based Design Flow

1.3.2 Testbench in VHDL
A system designed in VHDL must be simulated and tested for func-
tionality before it is turned into hardware. In this simulation pass,
design errors and incompatibility of components used in the design
can be detected. Simulating a design requires generation of test data
and observation of simulation results. This process can be done by use
of a VHDL module that is referred to as a testbench. A VHDL test-
bench uses high-level constructs of this language for data generation,
response monitoring, and even handshaking with the design. Inside
the testbench, the design that is being simulated is instantiated. The

8 Chapter 1

testbench together with the design form a simulation model used by a
VHDL simulation engine.

1.3.3 Design Validation
An important task in any digital design is design validation. Design
validation is the process that a designer checks his or her design for
any design flaws that may have occurred in the design process. A de-
sign flaw can happen due to ambiguous problem specifications, de-
signer errors, or incorrect use of parts in the design. Design valida-
tion can be done by simulation, assertion verification, or formal veri-
fication.

1.3.3.1 Simulation. Simulation for design validation is done before a
design is synthesized. This simulation pass is also referred to as be-
havioral, RT-level, or pre-synthesis simulation. At the RT level a de-
sign includes clock level timing but no gate and wire delays are in-
cluded. Simulation at this level is accurate to the clock level. Timing
of RT level simulation is at the clock level and does not usually con-
sider hazards, glitches, race conditions, setup and hold violations and
other detailed timing issues. The advantage of this simulation is its
speed compared with simulations at the gate or transistor levels.

Testbench

Text,
VCD...

Waveform

Other forms

Simulation Model

Hierachical
Design

Description
Simulator

Waveform

Simulator

...

Simulation Model

Hierachical
Design

Description

Text,
VCD...

Waveform

Other forms

...

Stimuli

Figure 1.4 Using a Testbench or a Waveform Editor for Simulation

Simulation of a design requires test data, and usually VHDL
simulation environments provide various methods for application of

Digital System Design Automation with VHDL 9

this data to the design being tested. Test data can be generated
graphically using waveform editors, or through a testbench. Figure
1.4 shows two alternatives for defining test input data for a simula-
tion engine. Outputs of simulators are in the form of waveforms (for
visual inspection) and text for large designs for machine processing.

Figure 1.5 VHDL Simulation with a Testbench

For simulating with a VHDL testbench, the testbench instanti-
ates the design under test, and as part of the code of the testbench it
applies test data to the instantiated circuit. Figure 1.5 shows VHDL
code of a counter circuit, its testbench, and its simulation results in
form of a waveform. As shown here, simulation validates the func-
tionality of the counter circuit being tested. With every clock pulse
the counter is incremented by 1. Note in the timing diagram it is
shown that the counter output changes with the rising edge of the
clock and no gate delays and propagation delays are shown here.
Simulation results show a correct functionality of the counter regard-
less of the clock frequency.

Obviously, an actual hardware component behaves differently.
Based on the timing and delays of the parts used, there will be a non-
zero delay between the active edge of the clock and the counter out-
put. Furthermore, if the clock frequency applied to an actual part is
too fast for propagation of values within the gates and transistors of a
design, the output of the design becomes unpredictable.

The simulation shown here is not provided with the details of the
timing of the hardware being simulated. Therefore, potential timing

10 Chapter 1

problems of the hardware that are due to gate delays cannot be de-
tected. This is typical of a pre-synthesis or high-level behavioral
simulation. What is being verified in Figure 1.5 is that our counter
counts binary numbers. How fast the circuit works and what clock
frequency it requires can only be verified after the design is synthe-
sized.

1.3.3.2 Assertion Verification. Instead of having to inspect simula-
tion results manually or by developing sophisticated testbenches, as-
sertion monitors can be used to continuously check for design proper-
ties while the design is being simulated. Assertion monitors are put
in the design being simulated by the designer. The designer decides
that if the design functions correctly, certain conditions have to be
met. These conditions are regarded as design properties, and asser-
tion monitors are developed by designer to assert that these proper-
ties are not violated. An assertion monitor fires if a design property
put in by the designer is violated. This alerts the designer that the
design is not functioning according to the designer’s expectation. OVL
(open verification library) provides a set of assertion monitors for
monitoring common design properties. Designers can use their own
assertions and use them in conjunction with their testbenches.

1.3.3.3 Formal Verification. Formal verification is the process of
checking a design against certain properties. When a design is com-
pleted, the designer develops a set of properties reflecting correct be-
havior of his or her design. Without running simulation, and without
requiring any simulation data, a formal verification tool examines the
design to make sure that the described properties hold under all con-
ditions. If a situation is found that the property will not hold, the
property is said to have been violated. Input conditions that make a
property to fail are regarded as the property’s counter examples.
Property coverage indicates how much of the complete design is exer-
cised by the property.

1.3.4 Compilation and Synthesis
Synthesis is the process of automatic hardware generation from a de-
sign description that has an unambiguous hardware correspondence.
A VHDL description for synthesis cannot include signal and gate
level timing specifications, file handling, and other language con-
structs that do not translate to sequential or combinational logic
equations. Furthermore, VHDL descriptions for synthesis must follow
certain styles of coding for combinational and sequential circuits.
These styles and their corresponding VHDL constructs are defined
under VHDL for RTL synthesis.

Digital System Design Automation with VHDL 11

In the design process, after a design is successfully entered and
its pre-synthesis simulation results have been verified by the de-
signer, it must be compiled to make it one step closer to an actual
hardware on silicon. This design phase requires specification of the
hardware that the design is to be realized in. For example, we have to
specify a specific ASIC, or an FPGA part as our “target hardware”.
When the target hardware is specified, technology files of that hard-
ware (ASIC, FPGA, or Custom IC) with detailed timing and func-
tional specification become available to the compilation process. The
compilation process, translates various parts of the design to an in-
termediate format (analysis phase), links all parts together, gener-
ates the corresponding logic (synthesis phase), places and routes
components of the target hardware and generates timing details.

Figure 1.6 Compilation and Synthesis Process

Figure 1.6 shows the compilation process and a graphical repre-
sentation for each of the compilation phase outputs. As shown, the
input of this phase is a hardware description that consists of various
levels of VHDL, and its output is a detailed hardware for program-

12 Chapter 1

ming an FPLD (Field Programmable Logic Devices) or manufacturing
an ASIC.

1.3.4.1 Analysis. A complete design that is described in VHDL may
consist of behavioral VHDL, bus and interconnection specifications,
and wiring of other VHDL components. Before the complete design is
turned into hardware, the design must be analyzed and a uniform
format must be generated for all parts of the design. This phase also
checks the syntax and semantics of the input VHDL code.

1.3.4.2 Generic Hardware Generation. After obtaining a uniform
presentation for all components of a design, the synthesis pass begins
its operation by turning the design into a generic hardware format,
such as a set of Boolean expressions or a netlist of basic gates.

1.3.4.3 Logic Optimization. The next phase of synthesis, after a de-
sign has been converted to a set of Boolean expressions, is the logic
optimization phase. This phase is responsible for reducing expres-
sions with constant input, removing redundant logic expressions, two
level minimization, and multi-level minimization that includes logic
sharing.

This is a very computationally intensive process, and some tools
allow users to decide on the level of optimization. Output of this
phase is in form of Boolean expressions, tabular logic representations,
or primitive gate netlists.

1.3.4.4 Binding. After logic optimization, the synthesis process uses
information from target hardware to decide exactly what logic ele-
ments and cells are needed for the realization of the circuit that is
being designed. This process is called binding and its output is spe-
cific to the FPLD, ASIC, or Custom IC being used.

1.3.4.5 Routing and Placement. The routing and placement phase
decides on the placement of cells of the target hardware. Wiring in-
puts and outputs of these cells through wiring channels and switch-
ing areas of the target hardware are determined by the routing and
placement phase. The output of this phase is specific to the hardware
being used and can be used for programming an FPLD or manufac-
turing an ASIC.

An example of a synthesis run is shown in Figure 1.7. In this fig-
ure, the counter circuit used in the simulation run of Figure 1.5 is
being synthesized. In addition to the VHDL description of the design,
the synthesis tool shown requires specification of the target hardware
to synthesize to. The output of the synthesis tool is a list of gates and
flip-flops available in the target hardware, and their interconnections.

Digital System Design Automation with VHDL 13

A graphical representation of this output that is automatically gener-
ated by the synthesis tool of Altera’s Quartus II is shown in Figure
1.7. What is shown here is referred to as the technology map view
that shows FPGA cells that are utilized for the implementation of the
complete circuit.

Figure 1.7 An Example Synthesis Run

1.3.5 Timing Analysis
As shown in Figure 1.3, as part of the compilation process, or in some
tools after the compilation process, there is a timing analysis phase.
This phase generates worst-case delays, clocking speed, delays from
one gate to another, as well as required setup and hold times. Results
of timing analysis appear in tables and / or graphs. Designers use this
information to decide on their clocking speed and, in general, speed of
their circuits.

14 Chapter 1

1.3.6 Post-Synthesis Simulation
After synthesis is done, the synthesis tool generates a complete net-
list of target hardware components and their timings. The details of
gates used for the implementation of the design are described in this
netlist. The netlist also includes wiring delays and load effects on
gates used in the post-synthesis design. The netlist output is made
available in various netlist formats including VHDL. Such a descrip-
tion can be simulated and its simulation is referred to post-synthesis
simulation. Timing issues, determination of a proper clock frequency
and race and hazard considerations can only be checked by a post-
synthesis simulation run after a design is synthesized. As shown in
Figure 1.3 the same testbench testing the original VHDL design be-
fore synthesis can be used for post-synthesis simulation.

Due to delays of wires and gates, it is possible that the behavior
of a design as intended by the designer and its behavior after post-
synthesis simulation are different. In this case, the designer must
modify his or her design and try to avoid close timings and race situa-
tions.

1.3.7 Hardware Generation
The last stage in an automated VHDL based design is hardware gen-
eration. This stage generates a netlist for ASIC manufacturing, a
program for programming FPLDs, or layout of custom IC cells.

1.4 VHDL
The previous section showed steps involved in taking an RT level de-
sign from a VHDL description to hardware implementation. This de-
sign process is only possible because VHDL is a language that can be
understood by system designers, RT level designers, test engineers,
simulators, synthesis tools, and machines. Because of this important
role in design, VHDL has become an IEEE standard. The standard is
used by users as well as tool developers.

1.4.1 VHDL Initiation
In the search for a standard design and documentation tool for the
VHSIC (Very High Speed Integrated Circuits) program, the United
States Department of Defense (DoD) in the summer of 1981 spon-
sored a workshop on hardware description languages at Woods Hole,
Massachusetts. This workshop was arranged by the Institute for De-
fense Analysis (IDA) to study various hardware description methods,
the need for a standard language, and the features that might be re-

Digital System Design Automation with VHDL 15

quired by such a standard. Because the VHSIC program was under
the restrictions of the United States International Traffic and Arms
Regulations (ITAR), the VHDL component of this program was also
initially subject to such restrictions.
 In 1983, DoD established requirements for a standard VHSIC
Hardware Description Language (VHDL), based on the recommenda-
tions of the "Woods Hole" workshop. A contract for the development of
the VHDL language, its environment, and its software was awarded
to IBM, Texas Instruments, and Intermetrics corporations. Work on
VHDL started in the Summer of 1983. At that time language specifi-
cations were no longer under ITAR restrictions, but these restrictions
still applied to government developed software.
 VHDL 2.0 was released only 6 months after the project began.
This version, however, allowed only concurrent statements, and
lacked the capability to describe hardware in a sequential software-
like fashion, a shortcoming that would seriously jeopardize the appli-
cability of the language for high level behavioral descriptions. The
language was significantly improved, as this and other shortcomings
were corrected when VHDL 6.0 was released in December of 1984.
Development of VHDL-based tools also began in 1984.
 In 1985, ITAR restrictions were lifted from VHDL and its related
software, and the VHDL 7.2 Language Reference Manual (LRM)
copyright was transferred to IEEE for further development and stan-
dardization. This led to the development of the IEEE 1076/A VHDL
Language Reference Manual (LRM), which was released in May of
1987. Later that year version B of the LRM was developed and ap-
proved by REVCOM (a committee of the IEEE Standards Board).
VHDL 1076-1987 formally became the IEEE standard hardware de-
scription language in December of 1987.
 Efforts for defining a new version of VHDL started in 1990 by a
team of volunteers working under the IEEE DASC (Design Automa-
tion Standards Committee). In October of 1992 a new VHDL referred
to as VHDL’93 was completed and was released for review. After mi-
nor modifications, this new version was approved by the VHDL bal-
loting group members and became the new VHDL language standard.
The present VHDL standard is formally referred to as VHDL 1076-
1993. Standardization work for this version did not complete until the
middle of 1994.

1.4.2 Existing Languages
Early in the VHSIC program in 1981 it was found that none of the
existing hardware description languages could be used as a standard
tool for the design, manufacturing, and documentation of digital cir-
cuits ranging from integrated circuits to complete systems. Part of the

16 Chapter 1

study for the development of the requirements of a VHSIC language,
however, concentrated on the capabilities, shortcomings, and other
characteristics of eight hardware description languages that were
available at that time. These languages were AHPL, CDL, CONLAN,
IDL, ISPS, TEGAS, TI-HDL, and ZEUS. We briefly describe the im-
portant features of these languages in order to provide a framework
for understanding the VHDL requirements that are discussed in the
next section.

1.4.2.1 AHPL. AHPL (a hardware programming language) is an
HDL for describing hardware at the dataflow level of abstraction.
This language uses an implicit clock for synchronizing assignments of
data to registers and flip-flops, but does not provide support for de-
scribing asynchronous circuits. The language descriptions consist of
interacting concurrent modules, and hierarchy of modules is not sup-
ported. Data types in AHPL are fixed and restricted to bits, vectors of
bits, and arrays of bits. Procedures or functions are only allowed in
the context of combinational logic units. Delay and constraint specifi-
cations are not allowed in AHPL and assignment of values to buses
and registers all occur at the same time without delay, since they are
synchronized with an implicit clock.

1.4.2.2 CDL. CDL (computer design language) is a hardware de-
scription language developed in an academic environment mainly for
instruction in digital systems. This language is strictly a dataflow
language, and does not support design hierarchy. In CDL, micro-
statements are used for transfer of data into registers. Conditional
micro-statements use if-then-else constructs and can be nested.

1.4.2.3 CONLAN. The CONLAN (CONsensus LANguage) project
began as an attempt to establish a standard hardware description
language. This platform consists of a family of languages for describ-
ing hardware at various levels of abstraction. Base CONLAN (bcl),
for example, is the base language for all member languages. All op-
erations in CONLAN are executed concurrently. CONLAN allows hi-
erarchical description of hardware but has limited external use.

1.4.2.4 IDL. IDL (interactive design language) is an internal IBM
language with limited outside use. IDL was originally designed for
automatic generation of PLA structures, but it was later extended to
cover more general circuit descriptions. Hardware in IDL can be de-
scribed in a hierarchy of structures. This language is primarily a con-
current hardware description language.

Digital System Design Automation with VHDL 17

1.4.2.5 ISPS. ISPS (instruction set processor specification) is a very
high level behavioral language and was mainly designed to create an
environment for designing software based on a given hardware. Al-
though the language is primarily targeted for CPU-like architectures,
other digital systems can easily be described in it. Timing control in
ISPS is limited. The "NEXT" construct allows timing control between
statements of behavioral descriptions, but it is not possible to specify
gate level timing and structural details.

1.4.2.6 TEGAS. TEGAS (TEst Generation And Simulation) is a sys-
tem for test generation and simulation of digital circuits. Although
several extended versions of this language have behavioral features,
the main language (TEGAS Description Language or TDL) is only
structural. Digital hardware can be described hierarchically in this
language. Detailed timing specification can be specified in TDL.

1.4.2.7 TI-HDL. TI-HDL (Texas Instruments Hardware Description
Language) is a multi-level language for the design and description of
hardware. It allows hierarchical specification of hardware and sup-
ports description of synchronous, asynchronous, and combinatorial
logic circuits. Behavioral descriptions in TI-HDL are sequential and
software-like, and use if-then-else, case, for, and while constructs for
program flow control. This language has fixed data types with no pro-
vision for adding user defined types.

1.4.2.8 ZEUS. The ZEUS hardware description language is a non-
procedural language that was created at General Electric Corpora-
tion. This language supports design hierarchy and allows definition of
systems by their functionality or their structural arrangements. Tim-
ing in ZEUS is at the clock level and there are no provisions for gate
delay specification or detailed timing constraints. Because of this tim-
ing arrangement, asynchronous circuits cannot be described in ZEUS.
This language provides a close link to physical layout.

1.4.3 VHDL Requirements
A DoD document entitled "Department of Defense Requirements for
Hardware Description Languages", released in January of 1983,
clearly stated the requirements for the VHSIC hardware description
language. The present VHDL satisfies the requirements set forth in
this detailed document. This section briefly describes the main fea-
tures of VHDL requirements.

1.4.3.1 General Features. The DoD requirement document specifies
that the VHSIC hardware description language should be a language

18 Chapter 1

for design and description of hardware. It indicates that VHDL
should be usable for design documentation, high-level design, simula-
tion, synthesis, and testing of hardware, as well as a driver for a
physical design tool.
 It emphasizes that VHDL is for the description of hardware from
system to gate, and it clearly specifies that system software is not an
issue and that physical design does not need to be addressed. Since in
an actual digital system, all small or large elements of the system are
active simultaneously and perform their tasks concurrently, the con-
currency aspect of VHDL is heavily emphasized. In a hardware de-
scription language, concurrency means that transfer statements, de-
scriptions of components, and instantiations of gates or logical units
are all executed such that in the end they appear to have been exe-
cuted simultaneously.

1.4.3.2 Support for Design Hierarchy. The DoD requirement docu-
ment specified the need for hierarchical specification of hardware in
VHDL. This feature is essential for a multi-level hardware language.
A design consists of an interface description and a separate part for
describing its operation. Several descriptions may exist for describing
the operation of a design, all corresponding to the same interface de-
scription. The operation of a system can be specified based on its
functionality, or it can be specified structurally in terms of its smaller
sub-components. Structural description of a component can be accom-
plished at all design levels. At the lowest levels, components are de-
scribed by their functionality and use no sub-components.

1.4.3.3 Library Support. For design management, the need for li-
braries is specified for VHDL. User defined and system defined primi-
tives and descriptions reside in the library system. The language
should provide mechanism for accessing various libraries. A library
can contain an interface description of a design. At the same time,
several specifications of the operation of this design can simultane-
ously reside in this library.
 Descriptions and models that are correct should be placed in the
library after the language compiler has compiled them. In addition,
libraries should be accessible to different designers.

1.4.3.4 Sequential Statement. Although the strong features of a
hardware description language should be its support for concurrent
execution of processes and statements, the VHDL language require-
ments also specified the need for software-like sequential control.
When a hardware designer partitions a system into concurrent com-
ponents or subsections, the designer should then be able to describe

Digital System Design Automation with VHDL 19

the internal operational details by sequential programming language
constructs such as case, if-then-else, and loop statements.
 Sequential statements provide an easy method for modeling
hardware components based on their functionality. Sequential or pro-
cedural capability is only for convenience and the overall structure of
the VHDL language remains highly concurrent.

1.4.3.5 Generic Design. In addition to inputs and outputs of a
hardware component, other conditions may influence the way it oper-
ates. These include the environment where the hardware component
is used, and the physical characteristics of the hardware component
itself. It should not be necessary to generate a new hardware descrip-
tion for every specific condition. Furthermore, many hardware com-
ponents in various logic families or FPGAs are functionally equiva-
lent, and differ only in their timing and loading characteristics. For
example, logic elements in Altera’s Cyclone, Cyclone II, and Stratix
are very similar in cell structure but have different timing properties.
 A good hardware description language should allow the designer
to configure the generic description of a component when it is used in
a design. Generic descriptions should be configurable for size, physi-
cal characteristics, timing, loading, and environmental conditions.
The ability to describe generic models of hardware was a DoD re-
quirement for the VHDL language.

1.4.3.6 Type Declaration and Usage. A language for the description
of hardware at various levels of abstractions should not be limited to
Bit or Boolean types. VHDL requirements specified that the language
ought to allow integer, floating point, and enumerate types, as well as
user defined types. Types defined by the system or by the user should
be placed in the library of the language environment and their use
should be transparent to the user.
 The language should provide the capability to redefine language
operators for types that are defined by the user. For example, the
language provides Boolean operators such as AND, OR, and NOT for
the predefined logic values. A user needing a multi-level logic should
be able to redefine these operators for the newly defined multi-level
logic type.
 In addition, a hardware description language should allow array
type declarations and composite type definitions, such as structures
or records in programming languages. The DoD document also speci-
fied a strongly typed language and strong type checking.

1.4.3.7 Use of Subprograms. The ability to define and use functions
and procedures was another VHDL requirement. Subprograms can be
used for explicit type conversions, logic unit definitions, operator re-

20 Chapter 1

definitions, new operation definitions, and other applications com-
monly used in programming languages.

1.4.3.8 Timing Control. The ability to specify timing at all levels is
another requirement for the VHDL language. VHDL should allow the
designer to schedule values to signals and delay the actual assign-
ment of values until a later time. For handshaking and gate or line
delay modeling in the sequential descriptions, it should be possible to
wait for the occurrence of an event or for a specific time duration.
 The language should be general and should allow any number of
explicitly defined clock signals. The clocking scheme should be com-
pletely up to the user, since the language does not have an implicit
clocking scheme or signal.
 Constructs for edge detection, delay specification, setup and hold
time specification, pulse width checking, and setting various time
constraints should be provided.

1.4.3.9 Structural Specification. The DoD requirements for a stan-
dard hardware description language specified that the language
should have constructs for specifying structural decomposition of
hardware at all levels. It also should be possible to describe a generic
one-bit design and use it when describing multi-bit regular structures
in one or more dimensions. This requires constructs for iteration in
the description of structures.

1.4.4 The VHDL Language
In its present form, VHDL satisfies all requirements of the 1983 DoD
requirements document. The experience, researchers, software devel-
opers, and other users with VHDL since it became the IEEE standard
in 1987 indicates this language is sufficiently rich for designing and
describing today’s digital systems.
 As originally required, VHDL is a hardware description language
with strong emphasis on concurrency. The language supports hierar-
chical description of hardware from system to gate or even switch
level. VHDL has strong support at all levels for timing specification
and violation detection. As expected, VHDL provides constructs for
generic design specification and configuration.
 A VHDL design entity is defined as an entity declaration and its
associated architecture body. The entity declaration specifies its in-
terface and is used by architecture bodies of design entities at upper
levels of hierarchy. The architecture body describes the operation of a
design entity by specifying its interconnection with other design enti-
ties, by its behavior, or by a mixture of both. The VHDL language
groups subprograms or design entities by use of packages. For cus-

Digital System Design Automation with VHDL 21

tomizing generic descriptions of design entities, configurations are
used. VHDL also supports libraries and contains constructs for ac-
cessing packages, design entities, or configurations from various li-
braries.
 Vendor specific VHDL libraries are used for time specification of
various FPGA and ASIC libraries. Other libraries have packages that
are specific for a certain design style promoted by an EDA manufac-
turers. The standard IEEE library is a library of packages for type
definitions, and logical operations.

A typical VHDL design environment has an analyzer program
that translates a VHDL description into an intermediate form and
places it in a design library. The analyzer is responsible for lexical
analysis and syntax check. Operations on the design library, such as
creating new libraries, deleting the old, or deletion of packages or de-
sign entities from a library are done through the design environment.
VHDL-based tools use the intermediate format from the design li-
brary. One well developed tool is the VHDL simulator, which simu-
lates a design entity from the design library and produces a simula-
tion report. A hardware synthesizer, test vector generator, and a
physical design tool are examples of other VHDL-based tools.

1.5 Summary
This chapter gave an overview of mechanisms, tools, and processes
used for taking a system level design description from the design
stage to a hardware implementation. This overview contained infor-
mation that will become clearer in the chapters that follow. This
chapter also provided the reader with the history of VHDL evolution.
With this standard HDL, the efforts of tool developers, researchers,
and software vendors have become more focused, resulting in better
tools and more uniform environments. The next chapter presents an
overview of VHDL.

Problems
1.1 Study Altera’s FPGA design environment and see their simula-
tion and synthesis environments. How do you compare Altera’s envi-
ronment with the simulation and synthesis environments discussed
in this chapter?
1.2 Search for several commercial Formal Verification and generate
a report of their input formats, capabilities, and their verification
utilities.

22 Chapter 1

1.3 Study Accellera’s OVL library and discuss how this library helps
the design automation process.

1.4 Study SystemC and discuss tools available for this language.
1.5 Look up TLM and discuss this design abstraction level.
1.6 Study the Verilog hardware description language and discuss
tools available for this language.

Suggested Reading
Accellera, Open Verification Library: Assertion Monitor Reference

Manual, www.accellera.org, v1.0, 2005.
Bening, Lionel and Harry D. Foster, Principles of Verifiable RTL De-

sign Second Edition - A Functional Coding Style Supporting Veri-
fication Processes in Verilog, Springer, 2nd edition, 2001, ISBN:
0792373685.

Brown, Stephen, and Zvonko Vranesic, Fundamentals of Digital Logic
with VHDL Design, 1st edition, 1999, McGraw-Hill Sci-
ence/Engineering/Math, ISBN: 978-0072355963.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference
Manual, SH94983-TBR (print) SS94983-TBR (electronic), ISBN 0-
7381-3247-0 (print) 0-7381-3248-9 (electronic), 2002.

IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer
Level (RTL) Synthesis, SH95242 (print) SS95242 (electronic),
ISBN 0-7381-4064-3 (print) 0-7381-4065-1 (electronic), 2004.

Navabi, Zainalabedin, Digital Design and Implementation with Field
Programmable Devices, Kluwer Academic Publishers, 2005, ISBN:
1-4020-8011-5.

Navabi, Zainalabedin, Embedded Core Design with FPGAs, 2006,
McGraw Hill-Professional, ISBN: 0071474811.

Perry, Douglas L., and Harry Foster, Applied Formal Verification for
Digital Circuit Design, 2005, McGraw-Hill Professional, ISBN:
978-0071443722.

www.accellera.org

23

2RTL Design with VHDL

The level of hardware description that hardware description lan-
guages are most used for is the register transfer level (RTL). Between
gate level on the low abstraction side, and system level on the high
abstraction side, the RT level of abstraction is a good balance between
correspondence to actual hardware and ease of description for hard-
ware designers. At this level of abstraction, designs can be simulated
with HDL simulators, they are synthesizable, and automatic genera-
tion of hardware is provided by most hardware design EDA tools.

This chapter presents VHDL at the RT level. We discuss how a
design is described in VHDL for simulation and synthesis. For this
purpose, only a subset of VHDL is needed and many complex lan-
guage structures that are used in cell modeling and higher level non-
synthesizable designs are not covered here. In order to utilize this
language in a design and test environment, certain language struc-
tures that do not necessarily correspond to specific hardware struc-
tures, but are used for testing RT level designs, are also described.

The chapter begins with a discussion of the main structures of
VHDL. After this introductory presentation, we will start covering
various constructs of the language using simple examples. The exam-
ples progressively become more complex and more constructs of the
language are covered. After we present a sufficient set of constructs
for design of hardware, we will turn our attention to developing test-
benches for testing designs in VHDL. Several typical testbenches for
the designs presented in the earlier parts of this chapter will be dis-
cussed in this part. The last part of this chapter covers several VHDL

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

24 Chapter 2

linguistic issues and terminologies. This basic understanding of the
linguistics of VHDL is necessary for a better understanding of the
language that will be presented in the chapters that follow.

2.1 Basic Structures of VHDL
An entity-architecture pair forms the basic structure of VHDL with
which all hardware components and testbenches are described. Lan-
guage constructs, according to VHDL syntax and semantics form the
inside of these language structures. Language constructs are de-
signed to facilitate description of hardware components for simula-
tion, synthesis, and specification of testbenches to specify test data
and monitor circuit responses. Figure 2.1 shows a simulation model
that consists of a design and its testbench in VHDL. VHDL constructs
(shown by dotted lines) of the VHDL model being tested are responsi-
ble for description of its hardware, while language constructs used in
a testbench are responsible for providing input data to the module
being tested and analysis or display of its outputs. Simulation output
is generated in form of a waveform for visual inspection or data files
for machine readability.

Figure 2.1 Simulation in VHDL

 After a design passes basic functional validations, it must be
synthesized into a netlist of components of a target library. The tar-
get library is the specification of the hardware that the design is be-
ing synthesized to. VHDL constructs used in the VHDL description of
a design for its verification, or those for timing checks and timing
specifications are not synthesizable. A VHDL design that is to be syn-
thesized must use language constructs that have a clear hardware
correspondence.

Figure 2.2 shows a block diagram specifying the synthesis proc-
ess. Circuit being synthesized and specification of the target library
are the inputs of a synthesis tool. The outputs of synthesis are a net-
list of components of the target library, and timing specification and
other physical details of the synthesized design.

RTL Design with VHDL 25

Often synthesis tools have an option to generate this netlist in
VHDL. In this case (Figure 2.3), the same testbench prepared for the
pre-synthesis simulation can be used with the netlist generated by
the synthesis tool. This simulation, which is often regarded as post-
synthesis simulation, uses timing information generated by the syn-
thesis tool and yields simulation results with detailed timing.

Figure 2.2 Synthesis of a VHDL Design

Figure 2.3 Post-synthesis Simulation in VHDL

2.1.1 Entities and Architectures
Entities used in VHDL for description of hardware components are
defined as a pair of entity and architecture declaration. The interface
of the circuit is specified by its entity, while its operation is described
by architecture bodies associated with that entity. Allowing multiple
architectures associated with an entity facilitates having configurable
designs for a given interface. We use the term module to refer to an
entity-architecture pair.

As shown in Figure 2.4 the interface specification of a circuit be-
gins with the ENTITY keyword and is followed by the name of the
entity together with IS. Entity declaration contains a list of the com-
ponent’s input-output ports and their types. On the other hand, the
architecture specification begins with the ARCHITECTURE keyword

26 Chapter 2

and describes the functionality of a defined entity. The functionality
of the component is described using gate instantiations, signal as-
signments and processes in the architecture body. The architecture
body consists of two parts; the declarative part and the statement
part. The declarative part is the section before the BEGIN keyword,
while the statement part is enclosed between BEGIN and END of the
architecture. The repeat of architecture or entity names after the
END keyword is optional in both entity and architecture specifica-
tions.

ENTITY entity_name IS
 input and output ports
END ENTITY entity_name;

ARCHITECTURE identifier OF entity_name IS
 declarative part
BEGIN
 statement part
END ARCHITECTURE identifier;

Figure 2.4 Entity Architecture Pair

A design may be described in a hierarchy of other modules. The
top-level module is the complete design, and modules lower in the
hierarchy are the design’s components. Component instantiation is
the construct used for bringing a lower level entity-architecture pair
(module) into a higher level one. Figure 2.5 shows a hierarchy of sev-
eral nested modules.

Figure 2.5 Hierarchy of Design Components

RTL Design with VHDL 27

2.1.2 Entity-Architecture Outline
As discussed, ports of a module are specified in its entity declaration,
and its operation is described in its architecture (Figure 2.6). Port
declarations specify the mode of a port (i.e., input, output, etc.) and its
size. Ports of an entity are visible to all architectures that are associ-
ated with it. The architecture description has a declarative part and a
statement part. Signals local to a specific architecture are declared in
the declarative part of an architecture. The statement part of the ar-
chitecture consists of statements that are considered concurrent.
These interacting statements form the description of the behavior of
the module.

ENTITY entity1 IS PORT (i1, i2 : IN BIT; w1 : OUT BIT);
END ENTITY entity1;

ARCHITECTURE simple1 OF entity1 IS
SIGNAL s1 : BIT;

BEGIN
 statement1;
 statement2;
 statement3;
END ARCHITECTURE simple1;

Figure 2.6 Entity Outline

The operation of an entity can be described in several ways. Ar-
chitecture simple_1a in Figure 2.7 describes a circuit at the gate level
and in terms of lower level components that have been defined before.
This is done by component instantiation statements. Architecture
simple_1b shows signal assignments, while architecture simple_1c
uses a process statement to describe the functionality of the design. A
process is used for behavioral descriptions of the design. A process is
recognized with the PROCESS keyword and includes a sequence of
statements. The execution of a process is triggered by events. These
events are either listed in a sensitivity list enclosed in a set of paren-
thesis; alternatively wait statements are used to control the process
execution. However we will be using the former throughout this chap-
ter. The simple_1c architecture uses conditional if-statements to gen-
erate the proper functions of the circuit outputs.

The subsections that follow describe details of entity ports and
description styles. In the examples in this chapter, and in the book,
we use uppercase letters for VHDL keywords and reserved words.
VHDL is not case sensitive. It allows letters, numbers and special
character “_” to be used for names. Names are used for VHDL struc-
tures such as entities, architectures, ports, generic parameters, vari-
ables, signals, and instance of components.

28 Chapter 2

Figure 2.7 Architecture Definition Alternatives

2.1.3 Entity Ports
In the PORT keyword in the entity declaration is a set of parenthesis
with a list of entity ports. This list includes inputs, outputs and bi-
directional input/output lines. Ports may be listed in any order. This
ordering can only become significant when the entity is instantiated,
and does not affect the way its operation is described. Top-level enti-
ties used for testbenches have no ports.

Along with input and output names, in the set of parenthesis,
sizes and types of ports may also be specified. A port may be IN for
input, OUT for output, INOUT for bidirectional input-output ports, or
BUFFER for buffered outputs. A BUFFER can be read in an architec-
ture that is associated with the entity that declares it; an OUT can-
not.

Range specification of a multi-bit port comes in a set of paren-
thesis as a pair of ascending or descending numbers. The keyword TO
is used for ascending range and DOWNTO for descending. Figure 2.8
shows an example circuit with scalar, vectored, IN, OUT and INOUT
ports. Ports named a, and b are one-bit inputs, and port c is a one-bit
input/output. Ports av and bv are 8-bit inputs of aCircuit. Vectors are
declared by the vector type (i.e., BIT_VECTOR) and a set of paren-
thesis that contain the range and direction of the indices. Another
input/output is port cv that is an 8-bit vector. Port w of aCircuit is
declared as a one-bit output, and wv is an 8-bit output of this module.

RTL Design with VHDL 29

ENTITY aCircuit IS
 PORT (a, b : IN BIT;
 c : INOUT BIT;
 av, bv : IN BIT_VECTOR (7 DOWNTO 0);
 cv : INOUT BIT_VECTOR (7 DOWNTO 0);
 w : OUT BIT;
 wv : OUT BIT_VECTOR (7 DOWNTO 0));
END ENTITY aCircuit;

Figure 2.8 Entity Declaration and Ports

As shown in Figure 2.8, each port also requires a type specifica-
tion. Type BIT is a predefined VHDL type which has been used in
this example. We will be using this type for now but keep in mind
that other standard and user-defined types are also allowed.
BIT_VECTOR is the vector version of the predefined BIT type.

2.1.4 Signals and Variables
In addition to ports, signals can be declared as data carriers in an
architecture (Figure 2.9). Signal declarations take place in the archi-
tecture declarative part between the header and the BEGIN keyword.
Similar to signals, variables are used as intermediate carriers with
the difference of only being accessible in the process bodies. Therefore
in addition to ports, signals are the only data objects that can carry
data between processes and other concurrent components.

ARCHITECTURE two_processes OF aCircuit IS
 SIGNAL d : BIT;
 SIGNAL dv : BIT_VECTOR (7 DOWNTO 0);
BEGIN
 p1: PROCESS (a, b, cv)
 VARIABLE e : BIT;
 VARIABLE ev : BIT_VECTOR (7 DOWNTO 0);
 BEGIN
 -- Can see all of aCircuit, plus d, dv, e, and ev.
 . . .
 END PROCESS;
 p2: PROCESS (av, bv, c)
 VARIABLE f : BIT;
 VARIABLE fv : BIT_VECTOR (7 DOWNTO 0);
 BEGIN
 -- Can see all of aCircuit, plus d, dv, f, and fv.
 . . .
 END PROCESS;
END ARCHITECTURE two_processes;

Figure 2.9 Signal and Variable Declaration

30 Chapter 2

 Signals are declared using the SIGNAL keyword. They are used
for interconnections and have properties of actual signals in a hard-
ware component. Variable declarations use the VARIABLE keyword.
They are used for behavioral descriptions and are similar to variables
in software languages. Figure 2.9 shows several signal and variable
declarations. This architecture is associated with the entity declara-
tion of Figure 2.8 and all ports of this entity are visible here.
 Signals represent simple interconnection wires, busses, and sim-
ple gate or complex logical expression outputs. Signals can be used in
scalar or vector form. Multiple concurrent assignments to a signal
that is resolved are allowed and the value that the signal receives is
the resolution of all concurrent assignments to the signal. Resolutions
will be discussed in the next section. Assignments to signals use the
<= symbol on the right hand side of the target signal. Figure 2.10
shows several examples of signals used on the right and left hand
sides of concurrent signal assignments. The architecture shown here
is associated with the entity of Figure 2.8.

ARCHITECTURE four_assignments OF aCircuit IS
 SIGNAL d : BIT;
 SIGNAL iv, jv, kv : BIT_VECTOR (7 DOWNTO 0);
BEGIN
 iv <= av AND cv;
 jv <= bv AND cv;
 kv <= av NOR bv;
 wv <= iv XOR jv WHEN c = ‘1’ ELSE iv NAND kv;
END ARCHITECTURE four_assignments;

Figure 2.10 Using Signals

 In contrast to signals, variables do not represent actual wires
and are primarily used as variables are used in software languages.
In VHDL, we use variables for temporary variables, intermediate val-
ues, and storage of data. A variable can only be used in a sequential
body of VHDL. Since variables are only visible in the processes that
they are declared in, multiple concurrent assignments to a variable is
not possible. Assignments to variables use the := symbol on the right
hand side of the target variable. Figure 2.11 shows several examples
of variables used in a VHDL architecture. VHDL also supports
shared variables that are very different from variables discussed
here. We will not cover shared variables in this chapter.
 In the vector form, inputs, outputs, signals and variables may be
used as a complete vector, part of a vector, or a bit of the vector. The
latter two are referred to as slicing and indexing. Examples of slicing
and indexing on right and left hand sides of a concurrent assignment
statement are shown in Figure 2.12.

RTL Design with VHDL 31

ARCHITECTURE mixed_processes_assignments OF aCircuit IS
 SIGNAL d : BIT;
 SIGNAL dv : BIT_VECTOR (7 DOWNTO 0);
BEGIN

 p1: PROCESS (a, b, cv)
 VARIABLE e : BIT;
 VARIABLE ev : BIT_VECTOR (7 DOWNTO 0);
 BEGIN
 IF (a = b) THEN ev := av; ELSE ev := bv;
 IF (a = ‘1’) THEN wv <= av; ELSE wv <= “1000111”;
 d <= e;
 END PROCESS;

 dv <= av XOR bv;
 w <= d AND a;

END ARCHITECTURE mixed_processes_assignments;

Figure 2.11 Using Signals and Variables

ARCHITECTURE indexing_slicing OF aCircuit IS
 SIGNAL d : BIT;
 SIGNAL dv : BIT_VECTOR (7 DOWNTO 0);
BEGIN
 wv (3 DOWNTO 0) <= av (7 DOWNTO 4) AND cv (7 DOWNTO 4);
 w <= cv (4);
 cv (7) <= av (0);
END ARCHITECTURE indexing_slicing;

Figure 2.12 Using Indexing and Slicing

2.1.5 Logic Value System
The standard VHDL defines BIT for the basic logic value type. This
type has ‘0’ and ‘1’ logic values. The std_logic standard package de-
fines a logic value system consisting of nine logic values. However,
std_logic is not a part of the VHDL language and is only an IEEE
standard utility package for the language. The VHDL standard does
include this package. The nine values of std_logic, which are shown in
Table 2.1, are used to represent high impedance, unknown, un-
initialized, capacitive and resistive 1 or 0, and driven 1 or 0. In most
cases only four or five of these nine values are sufficient to express
the logic-level behavior of a circuit. The ‘U’ logic value is considered
as the default value for objects that do not specify an initial value.

Since the std_logic type includes all values of the BIT type, we
will be using it instead of the BIT type from now on in the chapter. In

32 Chapter 2

the examples presented thus far replacing BIT with std_logic and
BIT_VECTOR with std_logic_vector is all that is needed to make
them work with this logic value system. The complete name of this
package is std_logic_1164, where 1164 is the IEEE reference number
to this standard. The std_logic_unsigned package, which will be used
for unsigned types, contains a set of unsigned arithmetic, conversion,
and comparison functions. This package is based on the
std_logic_1164 package. Finally, keep in mind that special care needs
to be taken as VHDL has very strict type checking rules.

Table 2.1 Logic Value System

Value Representing
'U' Uninitialized
'X' Forcing Unknown
'0' Forcing 0
'1' Forcing 1
'Z' High Impedance
'W' Weak Unknown
'L' Weak 0
'H' Weak 1
'-' Don’t care

2.1.6 Resolutions
As discussed above, VHDL allows multiple concurrent assignments to
resolved signals. A resolved signal has a resolution function associ-
ated with it. Resolution functions are part of the type mark used for a
signal declaration. The standard BIT type does not have a resolution
function embedded in it, and thus, it is not a resolved type. However,
the std_logic IEEE standard type is a resolved type and uses the re-
solved resolution function.

When multiple concurrent assignments are made to a resolved
signal, we say that the signal has multiple drivers. In this case, the
resolution function decides the final value of the signal. As an exam-
ple consider the description of selector in Figure 2.13. Signal yv is de-
clared as std_logic_vector and it is a resolved type. In the body of mul-
tiple_drivers architecture, two concurrent assignments are made to
this signal. Depending on values of as and bs, yv simultaneously re-
ceives av and bv, av and “ZZZZZZZZ”, bv and “ZZZZZZZZ”, or
“ZZZZZZZZ” and “ZZZZZZZZ”. The final value assigned to yv will be
determined by the resolved resolution function. The example in
Figure 2.13 also shows how the std_logic_1164 package can be made
visible to a design.

RTL Design with VHDL 33

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTIRY selector IS
 PORT (av, bv: IN std_logic_vector (7 DOWNTO 0),
 as, bs: IN std_logic;
 yv: OUT std_logic_vector (7 DOWNTO 0));
END ENTITY selector;

ARCHITECTURE multiple_drivers OF selector IS
BEGIN
 yv <= av WHEN as = ‘1’ ELSE “ZZZZZZZZ”;
 yv <= bv WHEN bs = ‘1’ ELSE “ZZZZZZZZ”;
END ARCHITECTURE multiple_drivers;

Figure 2.13 Multiple Assignments to a Resolved Signal

 Table 2.2 shows how the resolved function of the IEEE Std. 1164
package (the std_logic package for short) works for five or the more
commonly used values. Based on this table if in the above example,
av is “00001111”, bv is “00111100”, and as and bs are both ‘1’, then yv
becomes “00XX11XX”. But, if for example bv is ‘0’ instead of ‘1’, then
yv becomes “00001111”.

Table 2.2 Partial std_logic resolved Function

U U X 0 1 Z
U U U U U U
X U X X X X
0 U X 0 X 0
1 U X X 1 1
Z U X 0 1 Z

2.2 Combinational Circuits
A combinational circuit can be represented by its gate level structure,
its Boolean functionality, or description of its behavior. At the gate
level, interconnection of its gates are shown; at the functional level,
Boolean expressions representing its outputs are written; and at the
behavioral level a software-like procedural description represents its
functionality. This section shows these three levels of abstraction for
describing combinational circuits. Examples for combining various
forms of descriptions and instantiation of already described compo-
nents will also be described here.

34 Chapter 2

2.2.1 Gate Level Combinational Circuits
A combinational circuit can be represented by its subcomponents at
its gate level. VHDL does not provide primitive structures and thus
any primitive gate (NAND, NOR, etc.) must be separately described
using an entity-architecture pair. Figure 2.14 shows the VHDL code
for several common gate level components.

Figure 2.14 Basic Primitives Described in VHDL

The 2-input AND gate shown in Figure 2.14 has an entity decla-
ration with i1 and i2 as inputs of type std_logic and a single output
named o1. For defining the component’s functionality a signal as-
signment is used. A signal assignment statement assigns values to its
left-hand side signal or output, buffer or inout ports. An event ob-
served on i1 or i2, right-hand side signals of the signal assignment of
the AND2 gate causes the evaluation of the right hand side expres-
sion. The VHDL code shows a 3 ns delay for the 2-input AND compo-
nent. This results in the assignment of a new value to o1 taking place
3 ns after the evaluation of the right-hand-side expression.

The BUFIF1 and BUFIF0 gates are implemented using condi-
tional signal assignments which will be described later. Other primi-
tive gates can be easily defined as shown above. These primitive gates
provide a sufficient set of components for the description of larger
structures. With the help of component instantiation, which will be
shortly discussed, larger components can be described.

2.2.1.1 Majority Example. We use the majority circuit of Figure 2.15
to illustrate how primitive gates are used in a design. The description

RTL Design with VHDL 35

shown in Figure 2.16 corresponds to this circuit. The module descrip-
tion has inputs and outputs according to the schematic of Figure 2.15.

Figure 2.15 A Majority Circuit

Figure 2.16 shows a structural description of a majority circuit
consisting of four subcomponent instantiations. Components that are
to be instantiated in this architecture need to be compiled and exist
in the default WORK library. Each component instantiation starts
with an arbitrary label followed by the ENTITY keyword, the name of
the library and the component that is being instantiated. If the archi-
tecture name is eliminated, the most recently compiled architecture
of the library mentioned will be used. Alternatively, the architecture
name of the component being instantiated can follow its name in a set
of parenthesis. Following the component name, a mapping between
the ports of the instantiated component and the actual signals is
made. The interconnection between these subcomponents is done
with signals declared in the declarative part of the architecture.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY maj3 IS
 PORT (a, b, c : IN std_logic;
 y : OUT std_logic);
END maj3;

ARCHITECTURE gate_level OF maj3 IS
 SIGNAL im1, im2, im3 : std_logic;
BEGIN
 ANDa: ENTITY WORK.AND2 PORT MAP (a, b, im1);
 ANDb: ENTITY WORK.AND2 PORT MAP (b, c, im2);
 ANDc: ENTITY WORK.AND2 PORT MAP (a, c, im3);
 ORa : ENTITY WORK.OR3 PORT MAP (im1, im2, im3, y);
END ARCHITECTURE gate_level;

Figure 2.16 VHDL Code for the Majority Circuit

36 Chapter 2

The use of the LIBRARY and USE clauses at the beginning of
the code of Figure 2.16 and all other codes that use the std_logic type
is necessary, and we will not repeat them in the examples that follow.

2.2.1.2 Multiplexer Example. Figure 2.17 shows a 2-to-1 multiplexer
using three-state gates. This circuit is a good example to show how a
resolution function works for a signal. As shown in Figure 2.18, the 2-
to-1 multiplexer is described using BUFIF1 and BUFIF0, which we
defined in Figure 2.14.

The VHDL code of this multiplexer instantiates BUFIF1 and
BUFIF0 of Figure 2.14. In both cases the names of the architectures
are also included. The output is y, and since it is driven by both gates,
a resolution formed. When s is ‘1’ BUFIF1 conducts and the value of b
propagates to its output. At the same time, because s is ‘1’, BUFIF0
does not conduct and its output becomes ‘Z’. Resolution of these val-
ues driving y is determined by the resolution shown in Table 2.2.

Figure 2.17 Multiplexer Using Three-state Gates

ENTITY mux_2to1 IS
 PORT (a, b, s: IN std_logic; y: OUT std_logic);
END ENTITY mux_2to1;

ARCHITECTURE gate_level OF mux_2to1 IS BEGIN
 BUFIF1a: ENTITY WORK.BUFIF1(example) PORT MAP (b, s, y);
 BUFIF1b: ENTITY WORK.BUFIF0(example) PORT MAP (a, s, y);
END ARCHITECTURE gate_level;

Figure 2.18 Multiplexer VHDL Code

2.2.2 Gate Level Synthesis
Gate level descriptions in VHDL are synthesizable. However, it must
be noted that a designer using a gate level description cannot expect
the same exact gates and interconnections to be used in the synthe-
sized output. The hardware generated by a synthesis tool, and how

RTL Design with VHDL 37

gates are implemented merely depends on the target technology. Fur-
thermore, delays used in a gate level description are always ignored
by the synthesis tools.
 The synthesis of maj3 module of Figure 2.16 using Altera’s Quar-
tus II and specifying Cyclone as the target FPGA results in using a
single look-up table of a logic element, as shown in Figure 2.19. As
shown, the three inputs of the circuit are used in a look-up table to
produce the necessary combinational output.

Figure 2.19 Logic Element Used for maj3

The RTL view of this implementation that is also produced by
our synthesis tool gives a better view of the functionality of this gen-
erated hardware. Figure 2.20 shows this view of our gate level maj3
module. As expected, the AND-OR functionality of the Majority func-
tion is obtained from the synthesis tool.

Figure 2.20 RTL (logical) View of Synthesized maj3

38 Chapter 2

 Gate level descriptions using tri-state primitive structures are
also synthesizable. If the synthesis target hardware does not have tri-
state structures inside the chip (such as Altera’s Cyclone) regular
AND-OR gates will be used for the implementation of a description
that uses tri-states. For example, when synthesized, the description
of the multiplexer of Figure 2.18 uses a single look-up table.

2.2.3 Descriptions by Use of Equations
At a higher level than gates and transistors, a combinational circuit
may also be described by the use of Boolean, logical and arithmetic
expressions. The VHDL language has a set of standard operators that
can be used for Boolean, logical and arithmetic equations. Table 2.3
shows this set of operators. These operators can be used in assign
statements in order to create the desired functionality for the circuit.

Table 2.3 VHDL Operators

Boolean
Operators

NOT AND OR NAND NOR XOR XNOR

Comparison
Operators

= /= < <= > >=

Arithmetic
Operators

+ - ABS MOD REM * / **

Concat.
Operators

&

2.2.3.1 XOR Example. Consider the description of an XOR gate us-
ing Boolean equations in Figure 2.21. As discussed before, a signal
assignment can be used to assign values to ports or other signals.
Here the XOR operator has been used in a simple signal assignment
to assign the result of i1 XORed with i2 to the output after a 3 ns de-
lay. As shown, instead of having to write our own gates in the way
described in Section 2.2.1, we can simply use the operators listed in
Table 2.3 to produce any desired expression.

ENTITY xor2 IS
 PORT (i1, i2: IN std_logic; o1: OUT std_logic);
END ENTITY xor2;
--
ARCHITECTURE expression OF xor2 IS
BEGIN
 o1 <= i1 XOR i2 AFTER 3 NS;
END ARCHITECTURE expression;

Figure 2.21 XOR VHDL Code

RTL Design with VHDL 39

2.2.3.2 Full-Adder Example. Figure 2.22 shows another example of
using concurrent signal assignments. This code corresponds to a sin-
gle-bit full adder. A full adder can be described by two signal assign
statements; one for sum and one for carry out. The sum output can be
generated with a Boolean expression using two XOR operators. The
expression will be the same as the XOR example described above with
the difference of having three operands this time. As for the carry-out
(cout) output, again another signal assignment with AND and OR
operators is used. Note that the use of parenthesis is necessary in the
carry signal assignment for clarity of operator precedence.

ENTITY full_adder IS
 PORT (a, b, cin : IN std_logic;
 sum, cout : OUT std_logic);
END ENTITY full_adder;
--
ARCHITECTURE expression OF full_adder IS
BEGIN
 sum <= a XOR b XOR cin AFTER 0.3 NS;
 cout <= (a AND b) OR (a AND cin) OR (b AND cin)
 AFTER 0.2 NS;
END ARCHITECTURE expression;

Figure 2.22 Full Adder VHDL Code

The statements in the VHDL description of Figure 2.22 are concur-
rent. This means that the order in which they appear in this module
is not important. These statements are sensitive to events on their
right hand sides. When a change of value occurs on any of the right
hand side signals, the statement is evaluated and the resulting value
is scheduled for the left hand side signal.

2.2.3.3 Comparator Example. Consider the code shown in Figure
2.23, which corresponds to a 4-bit comparator. To define 4-bit arrays,
the std_logic_vector predefined array type in the std_logic package is
used. This array type represents is a collection of signals of the
std_logic type. The (3 DOWNTO 0) is the range of indices for the vec-
tor (3 is the index of the leftmost element and 0 is for the right most
element in the vector). Note that the range can also be declared as (0
TO 3), but the former declaration is recommended since the indices
correspond to bit position weights in an array.

First, the result of XORing bits of in1 and in2 are assigned to im,
which is defined as a 4-bit signal in the declaration part of the archi-
tecture. In the next line, a function call is used to produce the eq out-
put. A function is a subprogram consisting of sequential statements
that can be called anywhere in a VHDL code. Functions can be de-

40 Chapter 2

clared in several places such as the declarative part of an architecture
or a process. A function declaration starts with the FUNCTION key-
word and a function name followed by its parameters and finally a
single return value type. In this case, our function has a 4-bit input of
type std_logic_vector and a std_logic return type. This function per-
forms bit-by-next-bit operation, giving a 1-bit result. The function is
called in the architecture statement body with im as its input.

ENTITY comp_4bit IS PORT (
 in1, in2 : IN std_logic_vector (3 DOWNTO 0);
 eq : OUT std_logic);
END comp_4bit;

ARCHITECTURE functional OF comp_4bit IS
 SIGNAL im : std_logic_vector (3 DOWNTO 0);
 FUNCTION nor_reduce
 (in1: IN std_logic_vector (3 DOWNTO 0))
 RETURN std_logic
 IS
 VARIABLE result : std_logic ;
 BEGIN
 result:= NOT (in1(3) OR in1(2) OR in1(1) OR in1(0)) ;
 RETURN result;
 END;
BEGIN
 im <= in1 XOR in2;
 eq <= nor_reduce(im);
END functional;

Figure 2.23 Four-Bit Comparator

As shown in Figure 2.23, the function result is defined as a vari-
able. Notice the use of := instead of <= in the assignment. There will
be more on variables later in the chapter.

Another way to describe the comparator circuit is to use a condi-
tional signal assignment. A conditional signal assignment is a signal
assignment that takes place only when the condition stated after the
WHEN keyword is met. In the case of our comparator example, the
below conditional signal assignment produces the correct eq value.
This statement allows using another conditional part after the ELSE
keyword.

 eq <= ‘1’ WHEN in1 = in2 ELSE ‘0’;

2.2.3.4 Multiplexer Example. Figure 2.24 shows a 2-to-1 multi-
plexer using a conditional operator. Note here that the sizes of the a
and b inputs of the multiplexer are not specified here. These will be
determined when the multiplexer is instantiated in an upper level

RTL Design with VHDL 41

structure. In that case, the sizes of the signals in the upper level
structure that are associated with a and b will be passed to these sig-
nals.

ENTITY multiplexer IS
 PORT (a, b : IN std_logic_vector; s : IN std_logic;
 w : OUT std_logic_vector);
END ENTITY;

ARCHITECTURE expression OF multiplexer IS
BEGIN
 w <= a WHEN s = '0' ELSE b;
END ARCHITECTURE expression;

Figure 2.24 An Unconstrained 2-to-1 Mux using Condition Operator

2.2.3.5 Decoder Example. Figure 2.25 shows a 2-to-4 decoder, coded
using a selected signal assignment. The behavior of a selected signal
assignment is similar to the case statement. A case statement can
only appear in VHDL sequential bodies where, selected signal as-
signments are for the concurrent bodies of VHDL, e.g., an architec-
ture body. A selected signal assignment statement is similar to a con-
ditional signal assignment in the way that it chooses from a number
of expressions based on a condition, but they differ in that only condi-
tions relating to one expression are used in a selected signal assign-
ment.

ENTITY dcd2to4 IS
 PORT (sel: IN std_logic_vector (1 DOWNTO 0);
 y: OUT std_logic_vector (3 DOWNTO 0));
END dcd2to4;

ARCHITECTURE structural OF dcd2to4 IS
BEGIN
 WITH sel SELECT
 y <= "0001" WHEN "00",
 "0010" WHEN "01",
 "0100" WHEN "10",
 "1000" WHEN "11",
 "0000" WHEN OTHERS;
END ARCHITECTURE structural;

Figure 2.25 Decoder Using Selected Signal Assignment

2.2.3.6 Adder Example. For another example, consider the 8-bit ad-
der circuit with a carry-in and a carry-out output shown in Figure
2.26. For performing unsigned addition, this description uses the
std_logic_unsigned package that is another standard VHDL package.

42 Chapter 2

In the body of the equation architecture, an assignment state-
ment is used to set the add result of the two operands added with the
carry to the intermediate mid signal. This signal is declared as a 9-bit
signal to be able to capture the carry out of the nine bit addition on
its right hand side. For size matching the right and the left of the as-
signment to mid, ‘0’s are concatenated with a and b to make them
nine bit vectors.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY adder8 IS PORT (
 a : in std_logic_vector (7 DOWNTO 0);
 b : in std_logic_vector (7 DOWNTO 0);
 ci : in std_logic;
 s : out std_logic_vector (7 DOWNTO 0);
 co : out std_logic);
END ENTITY adder8;
--
ARCHITECTURE equation OF adder8 IS
 SIGNAL mid : std_logic_vector (8 DOWNTO 0);
BEGIN
 mid <= ('0'&a) + ('0'&b) + ci;
 co <= mid (8);
 s <= mid (7 DOWNTO 0);
END equation;

Figure 2.26 Adder with Carry-in and Carry-out

3.2.3.7 ALU Example. As our final example of concurrent assign-
ment statements, consider an ALU that performs add and subtract
operations and has two flag outputs gt and zero. The gt output be-
comes ‘1’ when input a is greater than input b, and the zero output
becomes ‘1’ when the result of the operation performed by the ALU is
‘0’.
 Figure 2.27 shows the VHDL code of this ALU. Using a condi-
tional signal assignment, the addsub input decides whether ALU in-
puts should be added or subtracted. Other VHDL constructs used in
this description are arithmetic, concatenation, conditional, compare
and relational operations.

RTL Design with VHDL 43

ENTITY alu8 IS PORT (
 a, b : in std_logic_vector (7 DOWNTO 0);
 addsub : in std_logic;
 gt, zero, co : out std_logic;
 r : out std_logic_vector (7 DOWNTO 0));
END ENTITY alu8;

ARCHITECTURE assigns OF alu8 IS
 SIGNAL mid : std_logic_vector (8 DOWNTO 0);
BEGIN
 mid <= ('0'& a) + ('0'& b) WHEN addsub = '1' ELSE
 ('0'& a) - ('0'& b);
 co <= mid (8);
 r <= mid (7 DOWNTO 0);
 gt <= '1' WHEN a > b ELSE '0';
 zero <='1' WHEN mid (7 DOWNTO 0) = "00000000" ELSE '0';
END assigns;

Figure 2.27 ALU VHDL Code Using a Mix of Operations

2.2.4 Instantiating Other Modules
Existing designs (entity-architecture pairs) can be instantiated in a
upper-level structures and wired with other components. We show a
simple example in this section.

2.2.4.1 ALU Example Using Adder. The ALU of Figure 2.27 starts
from scratch and implements every function it needs inside its archi-
tecture. If we have a situation that we need to use a specific design
from a given library, or we have a function that is too complex to be
repeated everywhere it is used, we can describe it separately, compile
it, and instantiate it when we need to use it.

Figure 2.28 shows another ALU that is different from the above
ALU in that the new ALU performs adding only. In this new ALU,
addition is handled by the adder circuit of Figure 2.26. The adder8
circuit is instantiated using VHDL direct instantiation. In this in-
stantiation, association by position is used for associating the ALUs
local signals to the ports of the adder. Because we are not using the
carry-out of the adder, we are associating it with OPEN.

Alternatively, association by name could be used that uses the
actual port names of the component being instantiated. In this case,
the actual port name comes first, followed by a right arrow and then
followed by the local signal name. This alternative is shown in Figure
2.28 below the instantiation statement that uses association by posi-
tion, and it is commented out. Note that the carry output from the
adder circuit that we are not using here, is not listed in the associa-

44 Chapter 2

tion list. This is equivalent to using OPEN in association by position.
Order of association elements in association by name is not impor-
tant.

ENTITY alu8add IS PORT (
 a, b : in std_logic_vector (7 DOWNTO 0);
 gt, zero, co : out std_logic;
 r : out std_logic_vector (7 DOWNTO 0));
END ENTITY alu8add;

ARCHITECTURE assigns OF alu8add IS
 SIGNAL mid8 : std_logic_vector (7 DOWNTO 0);
 SIGNAL mid1 : std_logic;
BEGIN

 AD: ENTITY WORK.adder8 PORT MAP (a, b, '0', mid8, OPEN);

-- AD: ENTITY WORK.adder8 PORT MAP
-- (a => a, b => b, ci => '0', s => mid8);

 r <= mid8;
 gt <= '1' WHEN a > b ELSE '0';
 zero <= '1' WHEN mid8 = "00000000" ELSE '0';
END assigns;

Figure 2.28 ALU VHDL Code Using Instantiating an Adder

2.2.5 Synthesis of Assignment Statements
Descriptions of the previous section concentrated on using signal as-
signment statements. We also showed components that instantiated
other components consisting of signal statements. In general, concur-
rent signal assignments, regardless of the hierarchy they are used in
and their complexity, are synthesizable.
 As an example of this synthesis, consider the alu8add of Figure
2.28. The RTL view of this circuit after being synthesized by Quartus
II is shown in Figure 2.29. As shown, the generated hardware uses
multiplexers for conditional assignments and adders for the addition
operations. The gray box in this diagram corresponds to the adder8 of
Figure 2.26. Details of this adder are shown in the lower part of the
diagram. The complete hardware uses 19 logic-elements of an Altera
Cyclone II FPGA.

RTL Design with VHDL 45

Figure 2.29 ALU_Adder RTL View after Synthesis

2.2.6 Descriptions with Sequential Flow
As described earlier in the chapter, VHDL provides constructs such
as different kinds of signal assignments, component instantiation and
processes to model concurrency. In addition to these constructs,
VHDL also provides constructs for sequential description of hard-
ware. This is referred to as the behavioral approach to describe hard-
ware components. In this approach, the designer expresses the func-
tionality or behavior of hardware instead of its structural details. Be-
havioral descriptions are supported with the process statements in
VHDL.

A process statement runs concurrently with other concurrent
components but its body consists of sequential statements. The proc-
ess statement can appear in the architecture body just as signal as-
signments and, encloses in a begin-end pair. The sequential state-
ments in a process statement run repeatedly during a simulation run.
The PROCESS keyword starts the definition of a process statement.
A list of signals enclosed in a pair of parenthesis can appear after the
process keyword as its sensitivity list. Any event on any of these sig-
nals will cause the process to be executed again. If no sensitivity list

46 Chapter 2

is specified for a process statement, that process will run continuously
until the end of the simulation time.

A process statement consists of a declarative part and a state-
ment part. The statement part is where the sequential statements
are listed while the declarative part consists of functions, variables
and other declarations (signal declarations are not allowed in the de-
clarative part of a process). Variables are used to store intermediate
values within a process. Variable declaration is similar to that of sig-
nals and it takes place in the declarative part of a process. Assigning
values to variables is done with :=. Initial values can also be assigned
to variables in their declarations.

Although variables can be data carriers like signals, they differ
from them in several ways. Signals do not change in a process execu-
tion and therefore cannot hold intermediate values within a process.
This is where variables become handy. They can store intermediate
values by a variable assignment. Declarations including variable dec-
larations take place once at the beginning of a simulation run and a
variable’s value is retained between process iterations. Another dif-
ference between signals and variables is that only signal assignments
are timed and the after clause cannot be used with variable state-
ments.

Another issue regarding signal assignments in concurrent bodies
is the delta delay. A simulation cycle is referred to as delta delay in
VHDL. Consider two signal assignments in an architecture body, one
of which its output causes the evaluation of the right hand side of the
other signal assignment. Since these are concurrent statements one
expects both of their results to be ready at the same time. On the
other hand, the first signal assignment causes an event on the right-
hand side of the second signal assignments. So it is obvious that there
is a time delay between these two statements. This delay is what is
referred to as delay time or delta delay, and is shown by the symbol.
The delay is what makes us think that the computer is performing
our simulation concurrently.

2.2.6.1 Majority Example. Figure 2.30 shows a majority circuit de-
scribed by the use of a process statement. This process statement is
sensitive to a, b and c signals. Any event on these signals will cause
the process block to run again and a new value will be assigned to the
y output. No delay has been considered for this signal assignment.
Therefore, the value of y will be updated time after any event on a,
b or c.

RTL Design with VHDL 47

ENTITY maj3 IS
 PORT (a, b, c : IN std_logic;
 y : OUT std_logic);
END maj3;

ARCHITECTURE sequential OF maj3 IS
BEGIN
 PROCESS (a, b, c)
 BEGIN
 y <= (a AND b) OR (b AND c) OR (a AND c);
 END PROCESS;
END ARCHITECTURE sequential;

Figure 2.30 Procedural Block Describing a Majority Circuit

2.2.6.2 Majority Example with Delay. The VHDL code corresponding
to a majority circuit with delay is shown in Figure 2.31. The code is
very similar to the code described in Figure 2.30 with an after clause
with a 5 ns delay value. In this case the result of the right-hand side
will be placed on y’s driver with the 5 ns delay value. After an event
on one of the inputs, the scheduling of value into the driver of y takes
place, but the value on y does not appear until 5 ns after the process
has been executed.

ARCHITECTURE sequential_delay OF maj3 IS
BEGIN
 PROCESS (a, b, c)
 BEGIN
 y <= (a AND b) OR (b AND c) OR (a AND c) AFTER 5 NS;
 END PROCESS;
END ARCHITECTURE sequential_delay;

Figure 2.31 Majority Gate with Delay

2.2.6.3 Procedural Multiplexer Example. Figure 2.32 illustrates an-
other example of a sequential process. This example uses an if state-
ment. VHDL allows the use of if statements in process statements.
An if statement is similar to the conditional signal assignment con-
struct, with the difference that it is only allowed in sequential bodies.
Depending on the condition specified for the if statement, a corre-
sponding branch is taken. Note that each if statement contains a cor-
responding then part. An if statement ends with the END IF key-
word. There can be any number of else-if branches to an if statement.
For the else-if parts, the ELSIF keyword must be used. On the other
hand a maximum of one else statement is allowed per each if-
statement. This optional else statement should be the last branch in
an if statement.

48 Chapter 2

ENTITY multiplexer IS
 PORT (a, b, s : IN BIT; w : OUT BIT);
END ENTITY;
--
ARCHITECTURE procedural OF multiplexer IS BEGIN
 PROCESS (a, b, s) BEGIN
 IF (s = '0') THEN w <= a;
 ELSE w <= b;
 END IF;
 END PROCESS;
END ARCHITECTURE procedural;

Figure 2.32 Sequential Flow Multiplexer

In this example, if the selector (s) is equal to zero, the block after
the THEN keyword is executed and w takes a, otherwise the block of
statements after the ELSE are taken and therefore w takes b.

2.2.6.4 Procedural ALU Example. A case statement is similar to if
statements, described in the previous example, in branching on a
condition. However a case statement chooses a branch based on the
value of the case expression, which does not need to be a Boolean.
Case statements are preferred over if statements when many choices
exist. This is why we have used the case statement in Figure 2.33. A
case statement is somehow similar to the selected signal assignment
described earlier. As discussed before, selected signal assignments
and conditional signal assignments cannot be used in process state-
ment bodies.

ENTITY alu8 IS
 PORT (left_i, right_i: IN std_logic_vector (7 DOWNTO 0);
 mode : IN std_logic_vector (1 DOWNTO 0);
 aluout : OUT std_logic_vector (7 DOWNTO 0));
END ENTITY;
--
ARCHITECTURE procedural OF alu8 IS BEGIN
 PROCESS (left_i, right_i, mode) BEGIN
 CASE mode IS
 WHEN "00" => aluout <= left_i + right_i;
 WHEN "01" => aluout <= left_i - right_i;
 WHEN "10" => aluout <= left_i AND right_i;
 WHEN "11" => aluout <= left_i OR right_i;
 WHEN OTHERS => aluout <= "XXXXXXXX";
 END CASE;
 END PROCESS;
END ARCHITECTURE procedural;

Figure 2.33 Sequential Flow ALU

RTL Design with VHDL 49

This ALU receives left_i, right_i and mode as its inputs. The
process statement, shown in the VHDL code, is sensitive to all its in-
puts. The case statement used here selects the correct operation cor-
responding to mode from the case alternatives. the case statement
has a case expression and several case alternatives. Each case alter-
native begins with the WHEN keyword. The last case alternative is
the OTHERS or the default alternative. This branch is taken when
the condition does not match any of the other alternatives. In our ex-
ample, inputs containing Z or X will take this branch.

2.2.7 Combinational Rules
Now that if and case statements are covered, consider a case where
there are conditions under which the output of a combinational cir-
cuit is not assigned a value. Obviously the output retains its previous
value, which implies the latching behavior. This latching behavior is
unwanted in describing combinational circuits. Therefore two rules
can be considered in describing combinational circuits with process
statements.

1. List all inputs of the combinational circuit in the sensitivity
list of the process statement describing it.

2. Make sure all combinational circuit outputs receive some
value regardless of how the program flows in the conditions
of if or case statements. If there are too many conditions to
check, set all outputs to their inactive values at the begin-
ning of the process statement.

2.2.8 Bussing
Bus structures can be implemented by the use of multiplexers or
three-state logic structures. Various methods of describing combina-
tional logic can be used for the description of a bus, in VHDL.

Figure 2.34 shows the VHDL code for a three-state bus with
three sources, busin1, busin2 and busin3. These sources are put on
busout by active high enabling control signals: en1, en2 and en3.

Three conditional signal assignments are used for assigning val-
ues to busout. Each conditional signal assignment either selects a bus
driver or a 4-bit ‘Z’ value for busout. As said before, multiple assign-
ments to a signal produce multiple drivers for that circuit. Therefore,
multiple conditional signal assignments are appropriate for repre-
senting busses in VHDL. Note that only one enable should be active
at a time. Multiple driving values for busout are resolved using the
resolved resolution function, which is part of the std_logic logic value

50 Chapter 2

system used in this example. Enabled inputs of busout produce logic
values on their drivers, while inactive ones put all ‘Z’ values on their
drivers. Resolving ‘Z’ with logic values results in a valid logic value,
but resolving multiple logic values results in unknown. This is why
we use high impedance for inactive enables.

ENTITY bussing IS
 PORT (
 busin1: IN std_logic_vector (3 DOWNTO 0);
 busin2: IN std_logic_vector (3 DOWNTO 0);
 busin3: IN std_logic_vector (3 DOWNTO 0);
 en1: IN std_logic;
 en2: IN std_logic;
 en3: IN std_logic;
 busout: OUT std_logic_vector(3 DOWNTO 0));
END bussing;
--
ARCHITECTURE structural OF bussing IS
BEGIN

 busout <= busin1 WHEN en1 = '1' ELSE (OTHERS => 'Z');

 busout <= busin2 WHEN en2 = '1' ELSE (OTHERS => 'Z');

 busout <= busin3 WHEN en3 = '1' ELSE (OTHERS => 'Z');

END structural;

Figure 2.34 Three-state Bussing

2.2.9 Synthesizing Procedural Blocks
Following combinational synthesis rules discussed above, we can eas-
ily develop VHDL designs for synthesis. We use the alu8 example of
Figure 2.33 for demonstrating this synthesis. Figure 2.35 shows the
RTL view of the synthesis result of this circuit using Altera’s Quartus
II. As shown, the circuit has eight one-bit 4-to-1 multiplexers. Each
multiplexer selects one of the four ALU functions depending on the
value of mode. The logic for the eight functions of left_i and right_i
appear to the left of the multiplexers.

The complete implementation of this circuit uses 33 of the 32,216
logic-elements of an EP2C35F672C6 Cyclone II FPGA. The Quartus
II FPGA design tool provides other post synthesis diagrams and re-
ports, including several timing reports and exact FPGA cell intercon-
nections.

RTL Design with VHDL 51

Figure 2.35 Synthesis of Sequential Flow ALU

52 Chapter 2

2.3 Sequential Circuits
As with any digital circuit, a sequential circuit can be described in
VHDL by use of gates, Boolean expressions, or behavioral constructs
(e.g., the process statement). While gate level descriptions enable a
more detailed description of timing and delays, because of complexity
of clocking and register and flip-flop controls, these circuits are usu-
ally described by use of sequential process statements. This section
shows various ways sequential circuits are described in VHDL. The
following discusses primitive structures like latch and flip-flops, and
then generalizes coding styles used for representing these structures
to more complex sequential circuits including counters and state ma-
chines.

2.3.1 Basic Memory Elements at the Gate Level
A clocked D-latch latches its input data during an active clock cycle.
The latch structure retains the latched value until the next active
clock cycle. This element is the basis of all static memory elements.
 A simple implementation of the D-latch using cross-coupled NOR
gates is shown in Figure 2.36. The VHDL code of Figure 2.37 corre-
sponds to this D-latch circuit. Notice the use of buffer for q and q_b.
This is due to the use of these signals on the right-hand-side of signal
assignments. These signals could have been declared as OUT and two
extra local signals could have done the job, but in this case two addi-
tional signal assignments would have been added to the code.

Figure 2.36 Clocked D-latch

RTL Design with VHDL 53

ENTITY latch IS
 PORT (d, c: IN std_logic;
 q, q_b : BUFFER std_logic);
END latch;

ARCHITECTURE structural OF latch IS
 SIGNAL s, r : std_logic;
BEGIN
 s <= c AND d AFTER 6 ns;
 r <= c AND (NOT d) AFTER 6 ns;
 q_b <= s NOR q AFTER 4 ns;
 q <= r NOR q_b AFTER 4 ns;
END structural;

Figure 2.37 VHDL Code for a Clocked D-latch

Alternatively, the same latch can be described with a concurrent
signal assignment. Three equivalent assignments are shown below.
In all three cases, q receives a new value when c is ‘1’ and retains its
value otherwise.

q <= d WHEN c = ‘1’ ELSE q;
q <= d WHEN c = ‘1’;
q <= d WHEN c = ‘1’ ELSE UNAFFECTED;

 These statements describe what happens in a latch and describe
latch transparency when c is ‘1’. Using two such statements with
complementary clock values describe a master-slave flip-flop. As
shown in Figure 2.38, the qm signal is the master output and q is the
flip-flop output.

ENTITY master_slave IS
 PORT (d, c: IN std_logic;
 q : OUT std_logic);
END master_slave;

ARCHITECTURE dual OF master_slave IS
 SIGNAL qm : std_logic;
BEGIN
 qm <= d WHEN c = '1';
 q <= qm WHEN c = '0';
END dual;

Figure 2.38 Master-Slave Flip-Flop

54 Chapter 2

2.3.2 Memory Elements Using Procedural Statements
Although latches and flip-flops can be described in gate level by com-
ponent instantiation and signal assignments, describing more com-
plex register structures cannot be done this way. This section pre-
sents coding styles for describing latches and flip-flops using process
statements. Later on, it will be shown that the same coding styles
presented here can be used to describe memories with more complex
control units as well as functional register structures such as count-
ers and shift-registers.

2.3.2.1 Latches. Figure 2.39 shows a D-latch described with a proc-
ess statement. This process statement is sensitive to the latch clock
and data input represented by c and d, respectively. The if statement
used in the process statement puts the data input into q when the
latch clock is active. This implies that any change on d while c is 1,
can be transparently seen on the output. This behavior is referred to
as transparency and it is how latches work.

ENTITY latch1 IS
 PORT (d, c: IN std_logic; q: OUT std_logic);
END latch1;

ARCHITECTURE behavioral OF latch1 IS
BEGIN
 PROCESS (d, c)
 BEGIN
 IF c = '1' THEN
 q <= d;
 END IF;
 END PROCESS;
END ARCHITECTURE behavioral;

Figure 2.39 Procedural Latch

2.3.2.2 D Flip-Flop. While a latch is transparent, a change on the D-
input of a D flip-flops does not directly pass on to its output. The D
input will only have an effect on the specified edge of the clock. The
VHDL code of Figure 2.40 describes a positive-edge trigger D-type
flip-flop. The process statement used is sensitive to changes on the
clock input. Since the code describes a positive-edge flip-flop, it only
transfers the data on the D-input to its output when clk has made a
‘0’ to ‘1’ transition. A process statement sensitive to the clk and an if
statement that determines a ‘0’ to ‘1’ transition on clk specifies the
positive edge of clk. Similarly, a negative-edge trigger D flip-flop is
created by changing the if statement to “ IF clk = ‘0’ ”.

RTL Design with VHDL 55

ENTITY DFF1 IS
 PORT (d, clk: IN std_logic; q : OUT std_logic);
END DFF1;
--
ARCHITECTURE behavioral OF DFF1 IS
BEGIN
 PROCESS (clk)
 BEGIN
 IF clk = '1' AND clk'EVENT THEN
 q <= d;
 END IF;
 END PROCESS;
END ARCHITECTURE behavioral;

Figure 2.40 A Positive-Edge D Flip-Flop

2.3.2.3 Synchronous Control. The coding style presented for the
above simple D flip-flop is a general one and can be expanded to cover
many features found in flip-flops and even memory structures. The
description shown in Figure 2.41 is a D-type flip-flop with synchro-
nous set and reset (s and r) inputs.

ENTITY DFF1sr IS
 PORT (d, clk, s, r: IN std_logic; q : OUT std_logic);
END DFF1sr;
--
ARCHITECTURE behavioral OF DFF1sr IS
BEGIN
 PROCESS (clk)
 BEGIN
 IF clk = '1' AND clk'EVENT THEN
 IF s = '1' THEN
 q <= '1';
 ELSIF r = '1' THEN
 q <= '0';
 ELSE
 q <= d;
 END IF;
 END IF;
 END PROCESS;
END ARCHITECTURE behavioral;

Figure 2.41 D Flip-Flop with Synchronous Control

The difference between this type of flip-flop and a simple D flip-flop is
that on every positive edge of the clock, it first checks for the set and
reset inputs and puts a ‘1’ into the output if s is active and a ‘0’ if r is
active. Only when s and r are inactive, the flip-flop places the D-input
on its output. Note that the s input has been given a higher priority to

56 Chapter 2

r by first checking for s in the sequential process statement. The flip-
flop structure corresponding to this description is shown in Figure
2.42.

Figure 2.42 D Flip-Flop with Synchronous Control

 Other synchronous control inputs can be added to this flip-flop in
a similar fashion. A clock enable (en) input would only require inclu-
sion of an if-statement in the last else part of the if-statement in the
code of Figure 2.41.

2.3.2.4 Asynchronous Control. Consider the asynchronous archi-
tecture of DFF1sr of Figure 2.43 that describes a D flip-flop with
asynchronous control. In order to have asynchronous control inputs
we only need to add asynchronous control signals to the process sen-
sitivity list and change the ordering of if statement conditions. In the
previous case when the process statement was only sensitive to clk,
the flow of the process statement would only start if any change hap-
pened on the clk input. In other words, changes on control inputs did
not have any effect on starting the flow of the process statement. In
this case however, by adding control signals to the sensitivity list, the
process block flow can start by any event seen on these signals or the
clk.
 Figure 2.44 shows a graphical notation that corresponds to the
asynchronous behavior described here.

ARCHITECTURE asynchronous OF DFF1sr IS
BEGIN
 PROCESS (clk, s, r) BEGIN
 IF s = '1' THEN
 q <= '1';
 ELSIF r = '1' THEN
 q <= '0';
 ELSIF clk = '1' AND clk'EVENT THEN
 q <= d;
 END IF;
 END PROCESS;
END ARCHITECTURE asynchronous;

Figure 2.43 D Flip-Flop with Asynchronous Control

RTL Design with VHDL 57

Figure 2.44 Flip-Flop with Asynchronous Control Inputs

2.3.3 Flip-flop Synthesis
In the above discussion, flip-flop and latches described by use of pro-
cedural statements are synthesizable. The flip-flop of the logic-
element used for the implementation of code of Figure 2.41 uses its
lookup-table to generate a ‘1’ or ‘0’ for setting and resetting the flip-
flop. As shown in Figure 2.45, all data (D, Set or Reset) of the flip-flop
go through the D input and its asynchronous inputs are unused. Data
on the D input is always controlled by the clock.

Figure 2.45 Synchronous Flip-Flop Synthesis

On the other hand, the flip-flop of the logic-element used for the
implementation of code of Figure 2.43 uses its asynchronous inputs
for setting and resetting. As shown in Figure 2.46 the lookup-table
used for the flip-flop with asynchronous control is only used for pass-
ing the D input of the circuit to the flip-flop D input. Logic-element
flip-flop inputs aD and ald are responsible for asynchronously loading
a ‘1’ into the flip-flop and the aclr handles asynchronous resetting.

58 Chapter 2

Figure 2.46 Asynchronous Flip-Flop Synthesis

RTL views of hardware generated for the two flip-flops are
shown in Figure 2.47. Comparing these circuits, more clearly shows
the use of the D-input of the flip-flop input for synchronous reset. The
D-input of the flip-flop resulted from synthesizing Figure 2.41 has a
logic block that involves d, r, and s (upper part of Figure 2.47). On the
other hand, the circuit d input directly connects to the D-input of the
flip-flop resulted from the synthesis of Figure 2.43 (lower part of
Figure 2.47).

Figure 2.47 Synchronous versus Asynchronous Synthesis

RTL Design with VHDL 59

2.3.4 Registers, Shifters and Counters
Registers, shifter-registers, counters and even sequential circuits
with more complex functionalities can be described by simple exten-
sions of the coding styles presented for the flip-flops. In most cases,
the functionality of the circuit only affects the last else-part of the if-
statement in the procedural statement of codes shown for the flip-
flops.

2.3.4.1 Registers. Figure 2.48 shows the VHDL code for an 8-bit
register with synchronous set and reset control. An 8-bit register is
defined similar to a D-flip-flop but for a vector of eight elements. As-
signing ‘1’s (‘0’s) to bits of q is done by an aggregate operation on the
right-hand side of the assignment. This operation selects bits of the
right-hand side vector it is forming and associates values to these
bits. The OTHERS keyword can be used in array aggregates to select
all the indexes that have not been selected up to the appearance of
OTHERS. A special case of this form, which is used in our example, is
when no other indexes have been selected. In this case OTHERS se-
lects all the indexes of the array.

ENTITY register8 IS
 PORT (
 d : IN std_logic_vector (7 DOWNTO 0);
 clk, s, r : IN std_logic;
 q : OUT std_logic_vector (7 DOWNTO 0));
END register8;
--
ARCHITECTURE behavioral OF register8 IS
BEGIN
 PROCESS (clk)
 BEGIN
 IF clk = '1' AND clk'event THEN
 IF s= '1' THEN
 q <= (OTHERS => '1');
 ELSIF r = '1' THEN
 q <= (OTHERS => '0');
 ELSE
 q <= d;
 END IF;
 END IF;
 END PROCESS;
END behavioral;

Figure 2.48 An 8-bit Register

2.3.4.2 Shift-Registers. A 4-bit shift-register with right- and left-
shift capabilities, a serial-input, synchronous reset input, and parallel
loading capability is shown in Figure 2.49. We have used the ris-

60 Chapter 2

ing_edge function instead of the event expression used in other exam-
ples of this chapter. This function is part of the std_logic_1164 pack-
age. All activities of the shift-register are synchronized with the clock
input. If rst is ‘1’, the register is reset, if ld is ‘1’, parallel d inputs are
loaded into the register, and if none are ‘1’ shifting left or right takes
place depending on the value of the l_r input (‘1’ for left, ‘0’ for right).
Shifting in this code is done by use of the concatenation operator &.
For left-shift, s_in is concatenated to the right of q(2 DOWNTO 0) to
form a 4-bit vector that is put into q. For right-shift, s_in is concate-
nated to the left of q(3 DOWNTO 1) to form a 4-bit vector that is
clocked into q.
 The style used for coding this register is the same as that used
for flip-flops and registers presented earlier. In these examples, a sin-
gle process statement handles function selection (e.g., zeroing, shift-
ing, or parallel loading) as well as clocking data d into the register.

ENTITY shift_reg4 IS
 PORT (
 d : IN std_logic_vector (3 DOWNTO 0);
 clk, ld, rst, l_r, s_in : IN std_logic;
 q : OUT std_logic_vector (3 DOWNTO 0));
END shift_reg4;

ARCHITECTURE behavioral OF shift_reg4 IS
BEGIN
 PROCESS (clk)
 VARIABLE q_t: std_logic_vector (3 DOWNTO 0);
 BEGIN
 IF rising_edge (clk) THEN
 IF rst= '1' THEN
 q_t := (OTHERS => '0');
 ELSIF ld = '1' THEN
 q_t := d;
 ELSIF l_r = '1' THEN
 q_t := q_t (2 DOWNTO 0) & s_in ;
 ELSE
 q_t := s_in & q_t (3 DOWNTO 1);
 END IF;
 END IF;
 q <= q_t;
 END PROCESS;
END behavioral;

Figure 2.49 A 4-bit Shift Register

2.3.4.3 Counters. The style used for describing the shift-register in
the previous discussion can be used for describing counters. A counter
counts up or down, while a shift-register shifts right or left. We use

RTL Design with VHDL 61

arithmetic operations in counting as opposed to shift or concatenation
operators in shift-registers.
 Figure 2.50 describes a 4-bit up-counter with a reset control in-
put. The code for this counter is similar to the shift-register described
above. The only difference is that the counter performs arithmetic
addition instead of shifting. The cnt_reg is used for saving the status
of the counter. The use of this signal eliminates the need for declaring
count as a BUFFER.

ENTITY counter4 IS
 PORT (reset, clk : IN std_logic;
 count : OUT std_logic_vector (3 DOWNTO 0));
END ENTITY;
--
ARCHITECTURE procedural OF counter4 IS
 SIGNAL cnt_reg : std_logic_vector (3 DOWNTO 0);
BEGIN
 PROCESS (clk)
 BEGIN
 IF (clk = '0' AND clk'EVENT) THEN
 IF (reset='1') THEN
 cnt_reg <="0000" AFTER 1.2 NS;
 ELSE
 cnt_reg <= cnt_reg + 1 AFTER 1.2 NS;
 END IF;
 END IF;
 END PROCESS;
 count <= cnt_reg;
END ARCHITECTURE procedural;

Figure 2.50 An Up Counter

2.3.5 Synthesis of Shifters and Counters
Except for the operations that are performed in the process state-
ments of the descriptions of the registers, counters, and shift regis-
ters, the above descriptions followed the same basic rules, and the
same styles of coding could be used for them. The styles we presented
are synthesizable, and for demonstration purposes we show the syn-
thesis results obtained by synthesizing the shift register of Figure
2.49.

Synthesis of this shift register uses 4 logic-elements of an Altera
Cyclone II chip. As shown in the RTL view of Figure 2.51, the gener-
ated hardware has a register part that feeds back to itself through a
cluster of combinational logic parts.

62 Chapter 2

Figure 2.51 Shift Register Synthesis RTL View

2.3.6 State Machine Coding
Coding styles presented so far can be further generalized to cover fi-
nite state machines of any type. This section shows coding for Moore
and Mealy state machines. The examples we will use are simple se-
quence detectors. These circuits represent the controller part of a
digital system that has been partitioned into a data path and a con-
troller. The coding styles used here apply to such controllers, and will
be used in later chapters of this book to describe CPU and multiplier
controllers.

2.3.6.1 Moore Detector. State diagram for a Moore sequence detec-
tor detecting 110 on its a input is shown in Figure 2.52. The machine
has four states that are labeled, S0, S1, S2, and S3. Starting in S0, if
the 110 sequence is detected, the machine goes into the S3 state in
which the output becomes ‘1’. In addition to the a input, the machine
has a reset input that forces the machine into its S0 state. The reset-
ting of the machine is synchronized with the clock.

Figure 2.52 A Moore Sequence Detector

The VHDL code of the Moore machine of Figure 2.52 is shown in
Figure 2.53. The current state is represented by an enumeration type.
This type has a value for each state; therefore for detecting 110 this
type should have four values. As shown, the state type is declared as
an enumeration type that has four states, S0, S1, S2, and S3. Type

RTL Design with VHDL 63

declarations take place in the declarative part of the architecture.
Another example of an enumeration type is the BIT type of the stan-
dard package with enumeration values of '0' and '1'.

The process statement of Figure 2.53, which is sensitive to clk, is
in charge of state transitions and register clocking. Upon the negative
edge of the clock, checked by " clk = '0' AND clk'EVENT " the process
statement checks for the reset input. If this input is active, the next
state becomes S0 by assigning S0 to current. Note that the value put
into current in this pass gets checked in the next run of the process
statement. On the other hand if the reset input is not active, the pro-
gram flow reaches the case statement and takes one of the case alter-
natives according to current. Each case alternative schedules a new
value into current that will be observed the next time the process
statement in entered.

ENTITY detector110 IS
 PORT (a, clk, reset : IN std_logic; w : OUT std_logic);
END ENTITY;
--
ARCHITECTURE procedural OF detector110 IS
 TYPE state IS (S0, S1, S2, S3);
 SIGNAL current : state := S0;
BEGIN
 PROCESS (clk) BEGIN
 IF (clk = '0' AND clk'EVENT) THEN
 IF reset = '1' THEN current <= S0;
 ELSE
 CASE current IS
 WHEN S0 =>
 IF a='1' THEN current <= S1;
 ELSE current <= S0; END IF;
 WHEN S1 =>
 IF a='1' THEN current <= S2;
 ELSE current <= S0; END IF;
 WHEN S2 =>
 IF a='1' THEN current <= S2;
 ELSE current <= S3; END IF;
 WHEN S3 =>
 IF a='1' THEN current <= S1;
 ELSE current <= S0; END IF;
 WHEN OTHERS => current <= S0;
 END CASE;
 END IF;
 END IF;
 END PROCESS;
 w <= '1' WHEN current = S3 ELSE '0';
END ARCHITECTURE procedural;

Figure 2.53 Moore Machine VHDL Code

64 Chapter 2

The w output of the circuit is assigned values using a single con-
ditional signal assignment. This statement is outside of the process
statement and becomes active when an event occurs on current.

2.3.6.2 Pulse Synchronizer. Figure 2.54 shows a pulse synchronizer
circuit. The circuit has an asynchronous adata input and a synched
output. It generates synchronous pulses on its synched output while
its adata input is high. This is a two-state state machine. The state of
the machine is the same as the value of synched.

ENTITY synchronizer IS
 PORT (clk, adata : IN std_logic;
 synched : OUT std_logic);
END ENTITY;
--
ARCHITECTURE procedural OF synchronizer IS
 TYPE state IS (S0, S1);
 SIGNAL current : state;
BEGIN
 PROCESS (clk) BEGIN
 IF (rising_edge(clk)) THEN
 IF current = S0 THEN
 IF adata = '0' THEN
 current <= S0;
 ELSE
 current <= S1;
 END IF;
 ELSE -- current = S1
 current <= S0;
 END IF;
 END IF;
 END PROCESS;
 synched <= '1' WHEN current = S1 ELSE '0';
END ARCHITECTURE procedural;

Figure 2.54 VHDL Code of a Synchronizer

2.3.7 State Machine Synthesis
All state machine descriptions discussed above are synthesizable. For
demonstration purposes we discuss synthesis results of the synchro-
nizer circuit of Figure 2.54. We synthesized this circuit using Altera
Quartus II synthesis tool targeting the Cyclone II FPGA. The synthe-
sized circuit uses one logic element of this FPGA. The RTL view and
the single logic-element implementing this circuit are shown in
Figure 2.55.

RTL Design with VHDL 65

Figure 2.55 Synchronizer synthesis results, RTL View, Cell View

2.3.8 Memories
VHDL allows declaration and usage of multidimensional arrays for
signals and variables. Memories are represented with user-defined
types. Figure 2.56 shows a memory declaration and several valid
memory operations. The memory type declaration has taken place in
the declarative part of the architecture. Here, type memory is defined
as an unconstrained array of 8-bit std_logic vectors. Then the mem
signal is defined as a 1023-element array of memory elements. In ad-
dition, the process statement of Figure 2.56 declares memv as a vari-
able of type memory. This variable is a memory array with 16 8-bit
words.

2.4 Writing Testbenches
VHDL coding styles discussed so far were for coding hardware struc-
tures, and in all cases synthesizability and direct correspondence to
hardware were our main concerns. On the other hand, testbenches do
not have to have hardware correspondence and they usually do not

66 Chapter 2

follow any synthesizability rules. The VHDL code of Figure 2.53
which is a 110 Moore detector will be used as the design under test
(DUT) in this section.

Figure 2.57 shows a testbench developed for the Moore detector
of Figure 2.53. The testbench entity which instantiates design under
test (DUT), detector110 in this example, has no ports. Initial values of
DUT inputs are assigned in the signal declarations stated in the de-
clarative part of this architecture. This testbench applies test data to
DUT.

The testbench uses four processes (signal assignments and proc-
ess statements are considered processes) that make assignments to
the signals that are associated with the ports of DUT. The first proc-
ess is a signal assignment for the rst signal. This assignment places a
single resetting pulse on the reset input of DUT. The second process
is a conditional signal assignment that generates a periodic signal on
the circuit clock input. The clock toggles until the simulation time
reaches 165 ns. The next process assigns values to the aa signal at
given time instances. This is achieved by the sequential wait state-
ments and sequential assignments to aa. The last process waits for
an event on ww and then it reports the time and value of the circuit
output.

ARCHITECTURE . . .
 TYPE memory IS
 ARRAY (INTEGER RANGE <>) OF
 std_logic_vector (7 DOWNTO 0);
 SIGNAL mem: memory(0 to 1023);
BEGIN
 PROCESS (mem)
 VARIABLE memv: memory(0 to 15);
 VARIABLE data: std_logic_vector(7 DOWNTO 0);
 VARIABLE short_data: std_logic_vector(3 DOWNTO 0);
 BEGIN
 . . .
 data := mem(956);
 short_data := mem(931)(6 downto 3);

 memv (12) := mem(189);

 mem (932) <= data ;
 mem (321)(5 DOWNTO 2) <= short_data;
 mem (940) <= "0000" & short_data ;

 END PROCESS;
 . . .
END ARCHITECTURE;

Figure 2.56 Memory Array Examples

RTL Design with VHDL 67

ENTITY detector110_tester IS END ENTITY;
--
ARCHITECTURE timed OF detector110_tester IS
 SIGNAL aa, clock, rst, ww : std_logic := '0';
BEGIN
 UUT1: ENTITY WORK.detector110 (procedural)
 PORT MAP (aa, clock, rst, ww);

 rst <= '1' AFTER 31 NS, '0' AFTER 54 NS;
 clock <= NOT clock AFTER 7 NS WHEN NOW<=165 NS ELSE '0';

 PROCESS BEGIN
 WAIT FOR 23 NS; aa <= '1';
 WAIT FOR 21 NS; aa <= '0';
 WAIT FOR 19 NS; aa <= '1';
 WAIT FOR 31 NS; aa <= '0';
 WAIT;
 END PROCESS;

 PROCESS (ww) BEGIN
 REPORT "Signal w changed to:"& std_logic'IMAGE(ww)&
 " at " & TIME'IMAGE(NOW)
 SEVERITY NOTE;
 END PROCESS;

END ARCHITECTURE timed;

Figure 2.57 Moore Detector Testbench

The waveform resulting from the simulation of the testbench of
Figure 2.57 is shown in Figure 2.58. Note from the waveform shown
that the data we applied were able to cause the output of DUT to trig-
ger.

Figure 2.58 Testbench Waveform Results

68 Chapter 2

2.5 Synthesis Issues
VHDL constructs described in this chapter included those for cell
modeling as well as those for designs to be synthesized. In describing
an existing cell, timing issues are important and must be included in
the VHDL code of the cell. At the same time, description of an exist-
ing cell may require parts of this cell to be described by interconnec-
tion of gates and transistors. On the other hand, a design to be syn-
thesized does not include any timing information because this infor-
mation is not available until the design is synthesized, and designers
usually do not use gates and transistors for high level descriptions for
synthesis.
 Considering the above, knowing that the timings are ignored by
synthesis tools, and only using gates when we really have to, the
codes presented in this chapter all have one-to-one hardware corre-
spondence and are synthesizable. For synthesis, a designer must con-
sider his or her target library to see what and how certain parts can
be synthesized. For example, most FPGAs do not have internal three-
state structures and three-state bussings are converted to AND-OR
busses.

2.6 VHDL Essential Terminologies
Several VHDL terminologies and linguistic issues were mentioned in
this chapter in the context of examples that we presented. Most of
these topics will be discussed and elaborated in the chapters that fol-
low. However, a big-picture view of these topics and their role in the
definition of the language is needed before we proceed into the pres-
entation of the details. This section provides such a view of the lin-
guistic aspects of the VHDL language.

2.6.1 Design
A design consists of an entity and an architecture. An entity declara-
tion defines the interface of the design, while the architecture pro-
vides the operation of the design.

2.6.2 Analysis
Before a design is simulated, it must be analyzed. The analysis phase
performs language syntax and semantic checks and translates the
VHDL source file into an intermediate format. The source file is said
to compile into a specific design library.

RTL Design with VHDL 69

2.6.3 Library
A library is where designs and utilities reside. When a design is com-
piled, it will be placed in a library that the user specifies. In addition,
there are libraries of standard definitions and packages that a design
may use. These utilities are pre-compiled and are supplied by tool
provides as part of their simulation or synthesis environment.

2.6.3.1 WORK Library. The default working library is called the
WORK library. By default, all designs are compiled into this library.
Designs in this library are referred to by preceding the keyword
WORK with the design entity name.

2.6.3.2 STD Library. The STD library is part of the VHDL language
and contains all basic definitions and types of the language.

2.6.3.3 IEEE Library. The IEEE library has packages of standard
types and utilities for arithmetic, text, and complex mathematical
processings.

2.6.4 Standard Packages
Standard packages are placed in standard libraries. They contain
utility types, functions, and procedures. These packages are provided
in compiled form by the tool vendors.

2.6.4.1 STANDARD Package. The STANDARD package defines
BIT, INTEGER, TIME and other standard types of VHDL.

2.6.4.2 TEXTIO Package. The TEXTIO package resides in the STD
library and contains procedures and functions for formatted ASCII
input and output from and to external files.

2.6.4.3 std_logic.1164 Package. The std_logic_1164 package re-
sides in the IEEE library. This package defines the industry standard
std_logic type, and functions and procedures for using this type in
designs. Basic operators of VHDL for the std_logic type are defined in
this package.

2.6.4.4 std_logic_unsigned Package. The std_logic_unsigned re-
sides in the IEEE library. This package contains functions and proce-
dures for unsigned arithmetic. VHDL arithmetic operators are de-
fined in this package.

70 Chapter 2

2.6.5 Elaboration
After a design is successfully analyzed, the elaboration phase begins.
In this phase, design libraries and components are put together and a
simulatable model is created. Static parameters are defined in this
phase.

2.6.6 Event Driven Simulation
VHDL simulation is event driven. This means that all components of
a design are concurrently alive, and events on ports of components
cause their activation. An event is regarded as a change in value of a
signal.

2.6.7 Concurrency
VHDL is a concurrent language. This means that in its concurrent
bodies, the order in which concurrent statements appear is not impor-
tant. Concurrent statements in a concurrent body of VHDL are exe-
cuted when an event occurs on one of their input ports.
 Concurrency is the way the simulation of components or con-
structs appears to the user. Obviously, VHDL is a language for which
simulators have been developed on single processor platforms, and
true concurrency in execution of thousands of component cannot ex-
ist. Through the use of concurrent constructs, timing of interconnect-
ing signals, and order of simulation of constructs or components, a
VHDL simulators makes us (the users) think that such execution is
being done concurrently.

2.6.8 Concurrent Bodies
The main concurrent body of VHDL is an architecture. Other concur-
rent blocks may exist within an architecture. Components instanti-
ated within an architecture and all sub-blocks and subcomponents
within these components are considered concurrent. Execution of
these components is event based.
 Concurrent bodies can only contain concurrent statements. Se-
quential statements contained in a sequential body become a concur-
rent statement that can be contained in a concurrent body.

2.6.9 Sequentiality
Sequentiality refers to the statements that are executed one after an-
other. The order in which sequential statements appear in a sequen-
tial body is important. Sequentiality is like programs are executed in

RTL Design with VHDL 71

a software language. Most sequential statements are similar to those
of software languages, i.e., if-then, case and loop statements.
 Although hardware components are concurrent, describing the
behavioral of a component is more easily done sequentially. Therefore
VHDL provides sequential bodies within which sequential statements
can be used. A component that is described sequentially runs in par-
allel and concurrent with other components of a design.

2.6.10 Sequential Bodies
A process statement is the main sequential body of the VHDL lan-
guage. A process statement is a concurrent statement, but its body is
sequential, and only sequential statements can be used in a process
statement. Other sequential bodies of VHDL are functions and proce-
dures.
 Under certain conditions, and for some sequential bodies, we can
use wait statements. A wait statement is a sequential statement. If
no wait statement appears in a sequential body, the sequential body
runs in zero time.

2.6.11 VHDL Objects and Classes
An entity that has a value of a given type is a VHDL object. Objects
may be explicitly declared, on they may be implicitly created in the
language. Port signals, loop index variables, signal for interconnect-
ing components, temporary variables, or files are some of the objects
in VHDL. An object may be of one of the four classes of signals, vari-
ables, constants, and files. A subclass of the variable class is the
shared variable class.

2.6.11.1 Signals. Objects of the signal class represent hardware
wires and have timing associated with them. Values assigned to a
signal are placed on the signal driver and will appear on the signal
after a specified delay value. Explicit declaration of a signal may only
appear in concurrent VHDL bodies. However, assignments to signals,
or using them, can be done in sequential or concurrent bodies. The
assignment symbol for signals is <= which has a nonzero time compo-
nent. The scheduling for assignment of the right hand side to the sig-
nal can be specified by use of an AFTER clause.
 In addition to explicitly declared signals, there are other signals
such as input and output ports and signals carrying history of other
signals that do not require explicit declarations. Issues related to tim-
ing of signals will be discussed later in this chapter.

72 Chapter 2

2.6.11.2 Variables. Objects of the variable class are for storage of
temporary values and have no hardware significance. Variables can
be assigned values and their values can be used much the same way
as variables in most software programming languages. Variables can
only be declared, or assigned values to, in sequential bodies of VHDL.
The standard := assignment is used to assign values to variables.
 The shared variable subclass of the variable class can be de-
clared in concurrent or sequential bodies. Loop parameters are of the
variable class and need not be explicitly declared.

2.6.11.3 Constants. Objects of the constant class represent constant
values of a given type. They can be declared and they are available
for use within concurrent and sequential bodies. An explicit constant
declared in a concurrent or sequential body of VHDL, consists of the
constant name, its type, and its value. The value given to the con-
stant cannot be altered. VHDL provides a mechanism for passing
non-hardware parameters for timing or specification of physical char-
acteristics of a component to component descriptions. Such can be
done using implicit constants that are referred to as formal generics.

2.6.11.4 Files. Another class of objects in VHDL is the file class. As
with the constants, files can be declared and used in concurrent and
sequential bodies.

2.6.12 Real Time
The smallest time increment in VHDL is femtoseconds. Activities are
scheduled in terms of this real time, and value reports are provided at
specific real time instances.

2.6.13 Delta Delay
The delta delay is an internal simulation cycle time in VHDL. The
delta delay is used by VHDL simulators to hide from us the fact that
processings and assignments are done sequentially, and make it ap-
pear as if concurrent assignments are really done concurrently.
 With a new real time increment, a VHDL simulator performs
concurrent assignments that depend on each other in times. When
all assignments are complete, it advances the real time. This makes it
appear as if all assignments have taken place in a single real time
instance, and thus concurrency.

RTL Design with VHDL 73

2.6.14 Scheduling
A value assigned to a signal is said to be scheduled for the signal. A
scheduled value has a time associated with it, which is the time that
the value appears on the signal. A scheduled value is not guaranteed,
and can be overwritten by another scheduling.

2.6.15 Resolution
VHDL allows multiple concurrent assignments to signals. However a
signal that is to receive multiple assignments must be a resolved sig-
nal. A resolved signal has a resolution function associated with its
type. A resolution function decides on a single value from multiple
concurrent values assigned to a resolved signal.

2.6.16 Code Formal
VHDL is a free-format language. White space is used as separator.
VHDL is not case sensitive, however, for clarity, we use upper case
for VHDL keywords and reserved words.
 Comments in VHDL are marked by two dashes (--). Two dashes
anywhere in a line make the rest of the line comment.

2.7 Summary
The focus of this chapter was on RT level description in the VHDL
HDL language. The chapter used complete design examples at vari-
ous levels of abstraction for showing ways in which VHDL could be
used in a design. The examples that were presented had one-to-one
hardware correspondence and were synthesizable. We have shown
how combinational and sequential components can be described for
synthesis. This introduction is enough for the reader to start coding
in VHDL and use this language for simple designs. In addition, this
introduction is needed for understanding the conceptual issues that
are discussed in the next five chapters. The last part of this chapter
introduces some VHDL terminologies that are needed for understand-
ing the linguistics of VHDL in chapters that follow.

Problems
2.1 For the figure shown below, write the necessary code fragments.

a. Use gate-level modeling (Write architectures for the gates
you are using).

74 Chapter 2

b. Use concurrent assignment statements.
c. Use a sequential PROCESS statement.

2.2 Show synthesizable VHDL code for a register unit that performs
operations shown below. The unit has a 3-bit mode (md) input, an
asynchronous reset (rs) input, a 1-bit output control (oc) input, and an
8-bit bi-directional io bus. The internal register drives the io bus
when oc is ‘1’ and md is not “111”. Use std_logic.
 md=000: does nothing
 md=001: right shift the register
 md=010: left shift the register
 md=011: up count, binary
 md=100: down count, binary
 md=101: complement register contents
 md=110: swap right and left 4 bits
 md=111: parallel load

2.3 Using D-flip-flops, generate an 8-bit LFSR (Linear Feedback
Shift-Register). For every bit, include a Binary Control (BC) value
that can turn the contribution of the flip-flop output to the XOR input
on or off (1 for ON, 0 for OFF). For the 8-bit LFSR include a 7-bit ge-
neric BIT_VECTOR that can configure contribution of LFSR flip-flops
to the LFSR feedback. The right-most flip-flop output has no XOR,
and the left-most flip-flop input is fed by the feedback line through
the input XOR.

RTL Design with VHDL 75

2.4 Show VHDL code for a 4-bit counter that counts the following
sequence: 0100, 0001, 1011, 1010, 0110, 1111, 0111, 0000, 1000. After
a clock pulse, if the present count is 0001, the next count becomes
1011, and if the present count is 1000 the next count becomes 0100
(roll over).

2.5 Describe the state machine shown below in VHDL.

2.6 Show VHDL model for a memory chip with 8-bit bi-directional
data input / output lines, a 16-bit address bus, a cs (chip select) and a
we (write-enable) input. When selected (cs is 1) and we is ‘1’, the
memory drives its output with the memory contents at the specified
address. When being written into, cs must be ‘1’ while we is ‘0’. When
not selected, the outputs remain at high impedance.

76 Chapter 2

a. Write a behavioral VHDL code. You can assume all over-
loaded arithmetic functions are available.

b. Generate a testbench to instantiate the memory, apply test
data to each memory location read the data back, verify its
correctness and continue this for all memory locations.
Your test data must be walking ‘1’ test that starts with
“10000000” at location 0, changes to “01000000” for loca-
tion 1, and continues to “00000001” for location 7 and
“10000000” for location 8, etc.

2.7 You are to design a processing element that receives its instruc-
tions serially through its synchronous serial_instruction input. The
system has a clock input with which all control and data activities are
synchronized. The header for the start of an instruction is 111. An
instruction begins after this sequence appears on the se-
rial_instruction input. Instructions are two bits. The system has a 16-
bit accumulator on which all activities happen, a 16-bit DataInput
and a 16-bit DataOutput. After the start sequence, 000 is for Re-
set_AC, 001 for Shiftright_AC, 010 for Addinput_AC, 001 is for In-
crementAC, 100 is for swaprightleft_AC, and 101 is for Comple-
ment_AC. The AC output is always available on the DataOutput.

a. Show a block diagram for your design.
b. Write synthesizable VHDL description of all your data

components (two such components).
c. Write synthesizable VHDL description of your controller.
d. Show the complete wiring and testbench template.

Suggested Reading
Bhasker, Jayaram, A VHDL Primer, 3rd edition, 1998, Prentice Hall

PTR, ISBN: 978-0130965752.
Brown, Stephen, and Zvonko Vranesic, Fundamentals of Digital Logic

with VHDL Design, 1st edition, 1999, McGraw-Hill Sci-
ence/Engineering/Math, ISBN: 978-0072355963.

IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer
Level (RTL) Synthesis, SH95242 (print) SS95242 (electronic),
ISBN 0-7381-4064-3 (print) 0-7381-4065-1 (electronic), 2004.

Navabi, Zainalabedin, Embedded Core Design with FPGAs, 2006,
McGraw Hill-Professional, ISBN: 0071474811.

77

3VHDL Constructs for Structure and
Hierarchy Descriptions

This chapter describes methods used in VHDL for describing basic
components and using components in upper level structures. The
chapter shows various binding methods and use and configuration of
generic components in upper level designs.
 The chapter begins with basics of architectures and moves into
structural descriptions. It then discusses issues related to binding
components, generic structures and discussion of specification of tim-
ing parameters are discussed next. We limit this discussion to only
these constructs that are essential for description of structures and
hierarchies of VHDL. Using simple language constructs, we build
several simple components and use them to demonstrate hierarchies
and upper level design units. The next chapter presents more behav-
ioral language constructs for description of more complex hardware
components. Our discussion of hierarchies in this chapter applies to
hardware components regardless of their complexity.

3.1 Basic Components
This section presents VHDL description of an inverter and 2-input
NAND gate that we will use in subsequent designs in the sections
that follow. Examples that follow will be used for demonstration of
wiring, binding, configurations, and timing parameter specifications.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

78 Chapter 3

3.1.1 Basic Model
Figure 3.1 shows the logical symbol for an inverter, and its VHDL
description. The entity declaration of the inverter of Figure 3.1 is fur-
ther detailed in Figure 3.2.

ENTITY inv IS
 PORT (i1 : IN BIT; y : OUT BIT);
END ENTITY;
--
ARCHITECTURE delay1 OF inv IS
BEGIN
 y <= NOT i1 AFTER 3 NS;
END ARCHITECTURE delay1;

Figure 3.1 Inverter Symbol and VHDL Description

 Figure 3.2 indicates that a port clause is bracketed between the
beginning and end indications of an entity declaration. The port
clause gives the declaration of all input and output ports of the entity.
Two interface signal declarations are used to declare i1 input and the
o1 output ports of the inverter. The type of i1 port is BIT and its mode
is IN. The o1 port is also of type BIT and its mode is OUT. The IN
and OUT modes for i1 and o1 specify that these signals are the input
and the output of the inverter. Ports can also have an INOUT mode
or BUFFER. INOUT is mainly used for bidirectional lines and defines
an input and an output signal. INOUT port may have a multiple
number of sources. On the other hand, BUFFER is primarily used for
output ports with a single driver which needs to be read in the same
body as it is being driven. Type BIT is a predefined VHDL type. In
addition to standard types, user-defined types are also allowed. Type
definition and usage are discussed in the next chapter.

Figure 3.2 Details of the Entity Declaration of the Inverter

VHDL Constructs for Structural and Hierarchy Descriptions 79

 Figure 3.1 also shows the architecture body of inv, identified as
delay1. This architecture describes the internal operation of the in-
verter. A single signal assignment bracketed between the BEGIN and
END keywords constitutes what is referred to as the statement part
of the delay1 architecture of inv. This statement sets the complement
of i1 input to o1 output, with a 4-ns delay. The <= symbol specifies
the direction of assignment. When an event occurs on i1 (i1 changes
value), the complement of the new value of i1 is scheduled for the o1
signal 4 ns later. TIME is a predefined type in VHDL, and its units
range from femtoseconds (10-15 s) to hours. Other time units can also
be defined.
 Also shown in Figure 3.1 is a graphical representation of the in-
terface description of inv. As shown, hollow square boxes are used for
input ports, and filled boxes signify the outputs. Other port modes in
VHDL are BUFFER and INOUT. Figure 3.3 shows various port
modes and the way they are driven. An input (left-most diagram) can
only be driven with any number of sources from outside of a compo-
nent. Outputs can only be driven from inside of a component with
zero or more sources. Bidirectional ports can be driven by any number
of sources or read from inside and outside. Buffer ports (right-most
diagram of Figure 3.3) may be updated by at most one source from
inside of a component, and they may be read from inside and outside.

Figure 3.3 Entity Parts, (a) Inputs, (b) Outputs, (c) Bidirectional, (d) Buffers

ENTITY nand2 IS
 PORT (i1, i2 : IN BIT; y : OUT BIT);
END ENTITY;
--
ARCHITECTURE delay1 OF nand2 IS
BEGIN
 y <= i1 NAND i2 AFTER 5 NS;
END ARCHITECTURE delay1;

Figure 3.4 Two-input NAND: Symbol, Entity Declaration, Architecture Body

80 Chapter 3

 Another example of an entity-architecture pair is shown in
Figure 3.4. The interface declaration of this nand2 example has two
signals, namely i1 and i2. Figure 3.5 shows the details of the nand2
port clause.

Figure 3.5 Port Clause Details for nand2

3.2 Component Instantiations
Wiring primitive structure for generation of larger designs is demon-
strated in this section. In VHDL, the operation of a design entity can
be described in terms of its subcomponents. To completely specify this
operation, we must indicate the component interconnections and link
them to a set of available library cells. The main language constructs
that support this style of hardware description are signal declara-
tions, component declarations, configuration specifications, and com-
ponent instantiations. These constructs are discussed here.
 For demonstrating the use of these constructs we use a 2-to-1
multiplexer example. The circuit shown in Figure 3.6 uses three
nand2 gates and an inv. The a input of the circuit is selected when s
is 0 and b is selected when s is 1.

Figure 3.6 mux2To1 Using Four nand2

VHDL Constructs for Structural and Hierarchy Descriptions 81

3.2.1 Direct Instantiation
The simplest form of instantiating lower level components for build-
ing upper level structure is direct instantiation. Figure 3.7 shows in-
stantiation of three nand2 and an inv entities for building multi-
plexer. As shown, intermediate signals, sbar, asel, and bsel signals
that are used for interconnecting nand2 and inv entities (Figure 3.6),
are declared as signals of type BIT in Figure 3.7.

ENTITY multiplexer IS
 PORT (a, b, s : IN BIT;
 w : OUT BIT);
END ENTITY;
--
ARCHITECTURE direct OF multiplexer IS
 SIGNAL sbar, asel, bsel : BIT;
BEGIN

 U1: ENTITY WORK.inv (delay1) PORT MAP (s, sbar);
 U2: ENTITY WORK.nand2 (delay1) PORT MAP (a, sbar, asel);
 U3: ENTITY WORK.nand2 (delay1) PORT MAP (b, s, bsel);
 U4: ENTITY WORK.nand2 (delay1) PORT MAP (asel, bsel, w);

END ARCHITECTURE direct;

Figure 3.7 Using Direct Instantiations

 As shown in Figure 3.7, a direct component instantiation begins
with an instantiation labeled and after a colon it is followed by the
ENTITY keyword, which is then followed by the exact library (i.e.,
WORK), entity name, and architecture identifier. For the instantia-
tion labeled u2, nand2 is the entity name of the component being in-
stantiated. As shown, the entity name is followed by the architecture
identifier in a set of parenthesis. If this architecture identifier is not
included, the most recently compiled architecture of nand2 will be
used as default.

3.2.2 Component Instantiation
Instead of direct instantiations shown in Figure 3.7, component in-
stantiation statements may be used for more flexibility in component
binding. Figure 3.8 shows this alternative architecture for our multi-
plexer of Figure 3.6. This figure only shows the gates architecture of
multiplexer and its entity declaration remains as shown in Figure
3.7.

82 Chapter 3

ARCHITECTURE gates OF multiplexer IS
 COMPONENT n1
 PORT (i1: IN BIT; y: OUT BIT);
 END COMPONENT;
 COMPONENT n2
 PORT (i1, i2: IN BIT; y: OUT BIT);
 END COMPONENT;
 FOR ALL : n1 USE ENTITY WORK.inv (delay1);
 FOR ALL : n2 USE ENTITY WORK.nand2 (delay1);
 SIGNAL sbar, asel, bsel : BIT;
BEGIN
 U1: n1 PORT MAP (s, sbar);
 U2: n2 PORT MAP (a, sbar, asel);
 U3: n2 PORT MAP (b, s, bsel);
 U4: n2 PORT MAP (asel, bsel, w);
END ARCHITECTURE gates;

Figure 3.8 Gates Architecture of Multiplexer

Figure 3.9 Syntax Details of the Architecture Body of multiplexer(gates)

 Figure 3.9 shows the syntax details of the architecture body in
Figure 3.8. Subcomponents in the gates description of the multiplexer
are inv, and nand2. The declarative part includes a component decla-
ration and a configuration specification for each of these components.
Component declarations define the interface to the component in an
instantiation statement in the statement part of an architecture, and

VHDL Constructs for Structural and Hierarchy Descriptions 83

configuration specifications associate such an instance with an exist-
ing entity. For example, in the case of n2 component, a component
declaration defines the ports of instantiations of n2 (referred to as
local ports) to be the same as those of the nand2 entity, that is, (i1, i2
: IN BIT; y : OUT BIT). The configuration of n2 specifies that for all
instantiations of this component (ALL : n2) the delay1 architecture of
the nand2 entity which exists in the WORK library should be used. In
the configuration specification following keyword FOR, the keyword
ALL specifies that the association with the specified existing entity
applies to all instances of that component. If different bindings are to
be used for different instances of a component, the list of labels that
binding applies to must be used instead of this keyword. Alternatives
in the use of component declarations and configuration specifications
are discussed later in this chapter. The word WORK in the configura-
tion specification specifies the library in which the delay1 architec-
ture of the nand2 entity resides. This is the default library and it re-
fers to the current working library. Definition of new libraries is dis-
cussed later in this chapter.
 In addition to the above constructs for defining components, the
description in Figure 3.8 and the partial description in Figure 3.9 also
include a signal declaration declaring several signals of type BIT. The
keyword SIGNAL begins the declaration and is followed by a list of
identifiers. BIT, the type indication for the signals, ends the declara-
tion. Signals declared here are used as intermediate signals in the
statement part of the gates architecture of multiplexer and are the
same as those used in the diagram of Figure 3.6. Figure 3.9 indicates
that the signal declarations are part of the architecture declarative
part.
 The architecture statement part describes the operation of mul-
tiplexer in terms of its components. Component instantiation state-
ments include a label, component name, and association between the
actual signals that are visible in the architecture body of the multi-
plexer and the ports of the component being instantiated. Syntax de-
tails of the instantiation statement shown in Figure 3.9 are given in
Figure 3.10. For this statement, u3 is a label for instantiation of n2
which is bound to the nand2 entity.

The mapping of ports specifies that the first two ports of this
component are connected to the b, and s inputs of the nand2. These
signal names are the primary ports of the multiplexer entity and
therefore are visible within its gates architecture body. The last port
of nand2, which is its output, is connected to the bsel intermediate
signal. The next instantiation statement in the statement part of the
architecture body of the multiplexer (Figure 3.8) uses bsel for the sec-
ond input of a nand2 component.

84 Chapter 3

Figure 3.10 Component Instantiation Statement Syntax Details

 The last statement in Figure 3.8 ends the gates structural de-
scription of the multiplexer. After a successful analysis of the gates
architecture of the multiplexer and all its subcomponents by a VHDL
simulation system, this design entity becomes available in a design
library and can be used in other designs. Designs that can use this
unit include a testbench and a multibit multiplexer. The next section
illustrates the latter.
 Compared to most hardware netlists, the description in Figure
3.8 is verbose. However, the language constructs in this description
provide flexibilities that do not exist in most netlists. A configuration
specification associates an instantiated component with an actual
entity and architecture from a specified library. A component declara-
tion declares a virtual design interface that defines the way a compo-
nent can be instantiated locally. A configuration declaration maps a
declared component to an actual component. Through the use of these
constructs, a description may be bound to various libraries and pack-
ages without changing instantiation specifications. If a configuration
declaration does not exist for a declared component, it is expected
that the name of the component and port names of the component
declaration match exactly those of the actual component. Further-
more, since an architecture identifier of an actual component is only
specified with a configuration specification, e.g., (delay1) in Figure
3.8, in the absence of a configuration specification, architecture for
the entity that has most recently been compiled will be used.

3.3 Iterative Networks
In addition to language constructs for declaration, configuration, and
instantiation of components, VHDL includes higher-level constructs
that can be used for definition of repetitive hardware at the struc-
tural level. Such constructs are discussed in this section. The example
used is an 8-bit multiplexer and is referred to as multiplexer8. This
circuit uses the multiplexer circuit.

VHDL Constructs for Structural and Hierarchy Descriptions 85

3.3.1 Multi-bit Vectors
Figure 3.11 shows a graphical symbol for the multiplexer8 and its
corresponding entity declaration.

ENTITY multiplexer8 IS
 PORT (a, b : IN BIT_VECTOR (7 DOWNTO 0); s : IN BIT;
 w : OUT BIT_VECTOR (7 DOWNTO 0));
END ENTITY;

Figure 3.11 Interface Description multiplexer8

The entity declaration uses multiplexer8 as the entity name. The port
clause of this declaration has three interface declarations for declar-
ing data inputs, select input, and the output. The a and b data inputs
are 8-bit arrays of bits, and for their declaration the BIT_VECTOR
type has been used. As with type BIT, BIT_VECTOR is a predefined
type in VHDL and is available in the default standard package. Defi-
nition and usage of new packages and types are discussed at the end
of this chapter.

3.3.2 Multi-instance Generations
Figure 3.12 shows schematic diagram of our multiplexer8 circuit. The
VHDL description corresponding to this circuit is shown in Figure
3.13. Instead of flatly instantiating all eight instances of multiplexer
we have used VHDL’s generate statement for generating multiple in-
stantiations. For each iteration through the generate statement, an
instance of the declared component, mux, is generated. The configura-
tion specification statement in the declarative part of the generate
statement binds each of the generated instances of mux to the multi-
plexer circuit of the WORK library (gates architecture of multiplexer,
Figure 3.8).

86 Chapter 3

Figure 3.12 multiplexer8 Hierarchical Structure

ARCHITECTURE iterative OF multiplexer8 IS
 COMPONENT mux PORT (a, b, s : IN BIT; w : OUT BIT);
 END COMPONENT;
BEGIN
 U0TO7: FOR i IN 0 TO 7 GENERATE
 FOR ALL : mux USE ENTITY WORK.multiplexer (gates);
 BEGIN
 Ui: mux PORT MAP (a(i), b(i), s, w(i));
 END GENERATE;
END ARCHITECTURE iterative;

Figure 3.13 Iterative Architecture of multiplexer8

The syntax details of the generate statement in Figure 3.13 are
shown in Figure 3.14. The statement begins with a label (U0TO7)
and, using a FOR loop for the generation scheme, it generates eight
instances of mux, that are all labeled ui. The region immediately after
the GENERATE keyword is the generate statement declarative part.
This region follows the syntax of the architecture declarative part and
is referred to as block_declarative_item. With each iteration, the
block-declarative-item shown here provides the ui instance of mux.

VHDL Constructs for Structural and Hierarchy Descriptions 87

Figure 3.14 Generate Statement Syntax Details

 There is also an if generation scheme in VHDL. This construct is
used to separate out some instances from others. This becomes espe-
cially useful for iterative structures that have different interconnec-
tion schemes for first and last instantiation. An example is a series of
full-adder where the first one uses carry-in, the last one uses carry-
out, and all full-adders in between use intermediate carry signals.

3.3.3 Simplified Generations
Figure 3.15 shows a simplified version of the 8-bit multiplexer. In this
description, a generate statement generates eight direct instances of
multiplexer. Because direct instantiations do not require binding, the
declarative part of the generate statement is not necessary.

ARCHITECTURE direct OF multiplexer8 IS
BEGIN
 U0TO7: FOR i IN 0 TO 7 GENERATE
 Ui: ENTITY WORK.multiplexer
 PORT MAP (a(i), b(i), s, w(i));
 END GENERATE;
END ARCHITECTURE direct;

Figure 3.15 Generating Direct Instantiation

3.4 Binding Alternatives
Configuration specifications in the architecture declarative part of a
VHDL description associate an instance of a component with a design
entity. So far in this chapter, we have used the combinations of com-
ponent declarations, configuration specifications, and component in-

88 Chapter 3

stantiation in their simplest forms. VHDL, however, allows other
forms of configuration specifications that make component instantia-
tions significantly more flexible than presented thus far.
 For the purpose of illustration, consider the multiplexer circuit of
Figure 3.6. The VHDL description corresponding to this diagram is
shown in Figure 3.8. This description uses an inverter and four
NAND gates. Alternatively, a NAND gate with two inputs tied to-
gether may be used instead of the u1 inverter. This can be done either
by changing u1 instance to n2 and using s for both gate inputs, or by
keeping the n1 component declaration and instantiation as is, and
binding u1 instance of n1 to a NAND gate instead of an inverter.
Figure 3.16 shows the latter alternative.

ARCHITECTURE alter OF multiplexer IS
 COMPONENT n1
 PORT (i1: IN BIT; y: OUT BIT);
 END COMPONENT;
 COMPONENT n2
 PORT (i1, i2: IN BIT; y: OUT BIT);
 END COMPONENT;
 FOR U1 : n1 -- Line 8
 USE ENTITY WORK.nand2 (delay1) PORT MAP (i1, i1, y);
 FOR ALL : n2 USE ENTITY WORK.nand2 (delay1);
 SIGNAL sbar, asel, bsel : BIT;
BEGIN
 U1: n1 PORT MAP (s, sbar);
 U2: n2 PORT MAP (a, sbar, asel);
 U3: n2 PORT MAP (b, s, bsel);
 U4: n2 PORT MAP (asel, bsel, w);
END ARCHITECTURE alter;

Figure 3.16 Configuration Specification Port Map

 The alter architecture of multiplexer of Figure 3.16 has n1 and
n2 component declarations. As discussed before, these declarations
specify how the declared components are used (instantiated) locally in
this architecture. As required by declaration on n1, u1 instance of n1
uses one input and one output. Then, configuration specification that
is used to bind n1 to an actual component outside of this architecture,
binds the u1 instance of n1 to the delay1 architecture of nand2.
 As stated before local port declaration (those of component decla-
rations) are used if a binding indication does not include a port map.
However, since the nand2 entity that we are binding n1 to, has dif-
ferent ports than those of n1 declaration, a port map is used in the
configuration specification of u1 instance of n1. As shown on line 9 of
Figure 3.16, the port map aspect shown, maps i1 that is the declared
port of n1 to the first two ports of nand2. Note that the first two ports

VHDL Constructs for Structural and Hierarchy Descriptions 89

of this entity are its two inputs. This same construct also binds the
declared y port of n1 to the third port of nand2, which becomes the
output of this gate.
 We refer to this method of port association as a two-step associa-
tion. As shown in Figure 3.17, the first step associates s to i1 and sbar
to y, where i1 and y are local declaration ports. The second step asso-
ciates this i1 to i1 and i2 of nand2 and this local y to y of nand2.

Figure 3.17 Two-step Associations

3.5 Association Methods
Examples discussed thus far use what is referred to as association by
position for port associations. This means that ports are connected by
the order that they appear in the port map aspect. See, for example,
to i1 ports connecting to the first two ports of nand2 in the example of
Figure 3.16. In this association, i1 connects to the ports of nand2 re-
gardless of what port names nand2 uses. However, since names are
not used, the ordering must be correct.
 An alternative port association is association by name. This asso-
ciation scheme uses actual names of signals to which local signals are
being connected to. For example, the port map aspect on line 9 of
Figure 3.16 can be rewritten as shown below.

PORT MAP (i1 => i1, i2 => i1, y => y);

In this statement, i1, i2, and y of nand2 are in bold, and i1 and y are
the local signals. As shown, i1 and i2 of nand2 connect to the local i1,
and y of nand2 connects to the local y.

VHDL reads “w => y” as y is associated with w.

90 Chapter 3

3.6 Generic Parameters
Component models can be parameterized to better utilize gate or
component models, and to make general models usable in different
design environments. The specific behavior of these models is de-
pendent on the parameters that are determined by the design entities
that use them. VHDL generic parameters can be used for this pur-
pose. For example, a generic parameter can be used for timing and
delay of a generic gate model. When this gate is used in a specific de-
sign environment, its generic parameters are determined. Generic
parameters are used and values are passed to these parameters in
much the same way as with ports. The syntax of constructs related to
ports and generics are similar, except that the generic clause and ge-
neric map aspect constructs use the keyword GENERIC instead of
PORT. In general, generics are a means of communicating non-
hardware and non-signal information between designs.
 A NAND gate and an inverter with generic parameters are
shown in Figure 3.18 to illustrate specification and usage of the ge-
neric language construct. The entity declarations for these gates in-
clude a generic clause and a port clause, as shown in Figure 3.19. The
generic clause in each of the gates in Figure 3.18 consists of a generic
interface list which contains interface constant declarations for tplh
and tphl. For the inverter, these generic parameters have default
values of 5 and 3 ns, respectively. The default values are useful for
simplifying upper level structures.

ENTITY inv_t IS
 GENERIC (tplh : TIME := 5 NS; tphl : TIME := 3 NS);
 PORT (i1 : IN BIT; y : OUT BIT);
END ENTITY;
--
ARCHITECTURE delay2 OF inv_t IS
BEGIN
 y <= '1' AFTER tplh WHEN (NOT i1) = '1' ELSE
 '0' AFTER tphl;
END ARCHITECTURE delay2;
-- --
ENTITY nand2_t IS
 GENERIC (tplh : TIME := 6 NS; tphl : TIME := 4 NS);
 PORT (i1, i2 : IN BIT; y : OUT BIT);
END ENTITY;
--
ARCHITECTURE delay2 OF nand2_t IS
BEGIN
 y <= '1' AFTER tplh WHEN (i1 NAND i2) = '1' ELSE
 '0' AFTER tphl;
END ARCHITECTURE delay2;

Figure 3.18 Entity Declarations with Generic Parameters

VHDL Constructs for Structural and Hierarchy Descriptions 91

Figure 3.19 Details of the Entity Declaration of the Inverter with Generics

3.6.1 Using Generic Default Values
Generic parameters for which default values exist, e.g., those of
Figure 3.18, can be left open. In which case the default values will be
used for the generic parameters. An example of this case is shown in
Figure 3.20.

ARCHITECTURE default OF multiplexer IS
 COMPONENT n2
 PORT (i1, i2: IN BIT; y: OUT BIT);
 END COMPONENT;
 FOR ALL : n2 USE ENTITY WORK.nand2_t (delay2);
 SIGNAL sbar, asel, bsel : BIT;
BEGIN
 U1: n2 PORT MAP (s, s, sbar);
 U2: n2 PORT MAP (a, sbar, asel);
 U3: n2 PORT MAP (b, s, bsel);
 U4: n2 PORT MAP (asel, bsel, w);
END ARCHITECTURE default;

Figure 3.20 Default Values for Generic Parameters

 The n2 component declaration in Figure 3.20, that is a local dec-
laration, and the format of which all instantiations must follow,
makes no mention of any generic parameters. Instantiations U1
through U4 use only PORT MAP which is how n2 is declared. The
configuration specification in this architecture of multiplexer binds all
n2 instances to delay2 architecture of nand2_t (Figure 3.18). Since
nand2_t(delay2) has default values for tplh and tphl generics, and

92 Chapter 3

multiplexer(default) does not overwrite them, 6 ns and 4 ns will be
used for tplh and tphl, respectively.

3.6.2 Generic Map Aspect
Constants or other generics may be associated with the formal ge-
neric parameters of a component. This is done in much the same way
that signals are associated with the formal ports of components.
Figure 3.21 shows another architecture for the multiplexer. In the
declarative part of this architecture, the declaration of n2 includes
local generic clauses as well as local port clauses. An instantiation of
this component in the statement part of the fixed architecture of the
multiplexer contains a generic map aspect and a port map aspect
(Figure 3.22).

ARCHITECTURE fixed OF multiplexer IS
 COMPONENT n2
 GENERIC (tplh, tphl : TIME);
 PORT (i1, i2: IN BIT; y: OUT BIT);
 END COMPONENT;
 FOR ALL : n2 USE ENTITY WORK.nand2_t (delay2);
 SIGNAL sbar, asel, bsel : BIT;
BEGIN
 U1:n2 GENERIC MAP (5 NS, 3 NS) PORT MAP (s, s, sbar);
 U2:n2 GENERIC MAP (5 NS, 3 NS) PORT MAP (a, sbar, asel);
 U3:n2 GENERIC MAP (5 NS, 3 NS) PORT MAP (b, s, bsel);
 U4:n2 GENERIC MAP (5 NS, 3 NS) PORT MAP (asel, bsel, w);
END ARCHITECTURE fixed;

Figure 3.21 Using Generic Map Aspect

Figure 3.22 Component Instantiation Statement with a Generic Map Aspect

VHDL Constructs for Structural and Hierarchy Descriptions 93

 The values used in the association lists of the generic map as-
pects shown in Figure 3.22 are associated with the formal generics
nand2_t. These values are used in place of the default values in the
generic interface list in the entity declaration for these entities. Since
the component declaration shown (n2) does not include default values
to be associated with the formal generics of these components, inclu-
sion of generic map aspects with instantiations of these components is
required.

3.6.3 Generic Association List
The syntax used for the association list of generics and ports are simi-
lar, and for both association by position and association by name are
possible. Association by position is easier and less verbose, while as-
sociation by name is less error-prone. Furthermore, for situations
that some generic parameters are to be specified and for others de-
fault values are to be used, association by name offers a more conven-
ient format.
 As an example of generic mapping by association by name, con-
sider component instantiation shown below. In this example, tplh of
n2 is given 4.5 ns and tphl that is not specified uses the default value
of 7 ns (nand2_t in Figure 3.18).

U3: n2 GENERIC MAP (tplh => 4.5 ns)
 PORT MAP (y => bsel, i1 => b, i2 =>s);

The above example also maps ports of n2 by association by name.
This association has the same result as the u3 instance of n2 shown
in Figure 3.21.
 Not specifying a generic or a port in association by name is in-
terpreted as leaving it open. Using the keyword OPEN in association
by position in place of a generic or a port has the same effect. Map-
pings of u3 instance of n2 as shown below are the same as those of
the previous example of this component instantiation.

U3: n2 GENERIC MAP (OPEN, 4.5 ns)
 PORT MAP (y => bsel, i1 => b, i2 =>s);

 We have presented examples for specifying gate delay values in
order to demonstrate the use of generics. Other uses of these parame-
ters include passing fan-ins and fan-outs, load resistance or capaci-
tance, and properties such as count sequences and signatures. For
example seed and polynomial of an LFSR may be passed to a general
purpose signature register through its generic parameters.

94 Chapter 3

3.7 Design Configuration
Binding a component instantiation to an actual component, as de-
scribed earlier in this chapter, does not have to be done in the archi-
tecture that uses component. This binding can be deferred until later
and accomplished by a configuration declaration. Therefore, it is pos-
sible to generate a generic design and specify the details of timing or
a specific component library at a later stage. This way, a generic de-
sign can be tested for various logic families, or a single test bench can
be used to test various versions of the same component. By use of con-
figurations, trying different descriptions of a component in an upper-
level design can easily be done even at the deepest level of nesting.

3.7.1 Basic Configuration Declaration
Instead of using configuration specifications to bind an instance of a
component to an entity-architecture pair, a configuration declaration
can pair an entity and an architecture into a configuration. In addi-
tion, as with configuration specification, a configuration declaration
can be used for specifying port maps, generic maps, and libraries. As
a simple example of this feature of the VHDL language, consider the
configurable architecture of multiplexer shown in Figure 3.23.

ARCHITECTURE configurable OF multiplexer IS
 COMPONENT n2
 GENERIC (tplh, tphl : TIME := 4 NS);
 PORT (i1, i2: IN BIT; y: OUT BIT);
 END COMPONENT;
 SIGNAL sbar, asel, bsel : BIT;
BEGIN
 U1: n2 PORT MAP (s, s, sbar);
 U2: n2 PORT MAP (a, sbar, asel);
 U3: n2 PORT MAP (b, s, bsel);
 U4: n2 PORT MAP (asel, bsel, w);
END ARCHITECTURE configurable;

Figure 3.23 configurable Architecture of multiplexer

 The architecture shown in this figure declares n2 as a component
with generic parameters and ports as shown. It then instantiates four
n2 instances. Since there is no configuration specification statement
in this architectures, and because n2 (which is a local declaration) is
not an entity in our WORK library, this architecture has unbound
component instances and cannot be simulated.
 Configuration declaration of Figure 3.24 can be used to correct
this problem by binding all instances of n2 to delay2 architecture of

VHDL Constructs for Structural and Hierarchy Descriptions 95

nand2_t. In addition, this VHDL construct is used here to specify ge-
neric parameters of nand2_t as part of its component configuration.

CONFIGURATION configured OF multiplexer IS
 FOR configurable
 FOR ALL : n2
 USE ENTITY WORK.nand2_t (delay2)
 GENERIC MAP (5 NS, 3 NS);
 END FOR;
 END FOR;
END CONFIGURATION configured;

Figure 3.24 Basic Configuration Declaration

 The configuration declaration of Figure 3.24 is identified as con-
figured. There are three levels of nestings in this description, and
they are numbered accordingly. Note that these numbers are for il-
lustration only and are not part of the code. Level 3 is the bracketing
of the configuration declaration. The second level is for obtaining
visibility into the configurable architecture of multiplexer, and Level
1 constitutes the binding of ALL n2 instances to actual components.
 Configuration declarations that configure the same architecture-
entity pair and use different identifiers can coexist in the same li-
brary. As an example, consider the another_configured configuration
declaration of Figure 3.25. As shown, this body associates n2 in-
stances of multiplexer with the delay2 architecture of nand2 and does
not use a generic map aspect. An upper-level structure using this con-
figuration must use the following binding indication.

CONFIGURATION another_configured OF multiplexer IS
 FOR configurable
 FOR ALL : n2
 USE ENTITY WORK.nand2_t (delay2);
 END FOR;
 END FOR;
END CONFIGURATION another_configured;

Figure 3.25 Another Configuration Declaration for Multiplexer

 The syntax of a configuration declaration construct is shown in
Figure 3.26.

96 Chapter 3

Figure 3.26 Details of Configuration Declaration

 The heading in this statement specifies an identifier for the con-
figuration declaration and the entity to be configured. This is followed
by a block configuration within which the scope is limited to the
statement part of the configurable architecture of the multiplexer. In
this block configuration, binding for all visible components can be
specified by individual component configurations. We have used a
single component configuration for binding all n2 instances. Compo-
nent configurations begin with the FOR keyword followed by compo-
nent specifications. Following the USE keyword, a binding indication
is used to associate all instances of n2 to the delay2 architecture of
the multiplexer. As shown in Figure 3.26, there is only a minor differ-
ence between the syntax of component configurations and the con-
figuration specifications. The former requires the END FOR key-
words, while the latter, which is used in the declarative part of the
architectures, does not. Component configurations, however, offer
more flexibility, and many levels of component nestings can be speci-
fied within these constructs.

3.7.2 Incremental Configuration
Configuration declarations can be used in conjunction and on top of
configuration specifications. The former incrementally adds or over-
writes some of the bindings of the latter. Figure 3.27 shows an archi-

VHDL Constructs for Structural and Hierarchy Descriptions 97

tecture for multiplexer and its corresponding configuration declara-
tion.

ARCHITECTURE reconfigurable OF multiplexer IS
 COMPONENT n2
 GENERIC (tplh, tphl : TIME := 4 NS);
 PORT (i1, i2: IN BIT; y: OUT BIT);
 END COMPONENT;
 --Primary Binding:
 FOR ALL : n2 USE ENTITY WORK.nand2_t (delay2);
 SIGNAL sbar, asel, bsel : BIT;
BEGIN
 U1: n2 PORT MAP (s, s, sbar);
 U2: n2 PORT MAP (a, sbar, asel);
 U3: n2 PORT MAP (b, s, bsel);
 U4: n2 PORT MAP (asel, bsel, w);
END ARCHITECTURE reconfigurable;
--
CONFIGURATION reconfigured OF multiplexer IS
 FOR reconfigurable
 FOR ALL : n2
 GENERIC MAP (5 NS, 3 NS);
 END FOR;
 END FOR;
END CONFIGURATION reconfigured;

Figure 3.27 Incremental Binding

 The reconfigurable architecture of multiplexer of this example
uses a configuration specification as its primary binding to associate
all instances of n2 with nand2_t(delay2). Further down in Figure
3.27, the reconfigured configuration declaration of multiplexer adds a
generic map aspect to the primary binding. This generic map aspect
specifies 5 ns and 3 ns for the tplh and tphl of nand2_t.

3.7.3 Configuring Nested Components
Initially, a designer may use components based on their functionality
rather than timings or specific technology. These designs may be used
in upper-level designs, which may cause them to be buried under sev-
eral levels of design hierarchy. Configuration declarations can be ex-
tended beyond configuring components of the immediate architec-
tures and can be used to configure several levels of component nest-
ings.
 Consider for example, default, fixed, configurable, and recon-
figurable architectures of multiplexer. These architectures may use
nand2 or nand2_t with various delay values. Any of these multiplex-
ers can be used in an 8-bit multiplexer. VHDL allows the formation of

98 Chapter 3

the 8-bit multiplexer without specifying the exact multiplexer archi-
tecture to use, and without specifying NAND gates to use for the mul-
tiplexers. Figure 3.28 shows such an 8-bit multiplexer.

ARCHITECTURE multiconfig OF multiplexer8 IS
 COMPONENT mux
 PORT (a, b, s : IN BIT; w : OUT BIT);
 END COMPONENT;
BEGIN
 U0TO7: FOR i IN 0 TO 7 GENERATE
 Ui: mux PORT MAP (a(i), b(i), s, w(i));
 END GENERATE;
END ARCHITECTURE multiconfig;

Figure 3.28 Unspecified Components and Sub-components

 Note in Figure 3.28 that there is no binding indication for eight
generated instances of mux. Furthermore, if we decide that mux is
actually one of the multiplexers of this chapter, the bindings for the
gates of the multiplexers are yet to be decided.
 Figure 3.29 shows a multi level configuration. The block configu-
ration that begins with FOR multiconfig gives visibility to the multi-
config architecture of multiplexer8 of Figure 3.28. A generate state-
ment, that itself is considered a block, is in this architecture. The
block configuration of Figure 3.29 that begins with FOR U0TO7 gives
visibility to the inside of the generate statement of Figure 3.28. The
u1 instance of mux appears in this block (the generate statement).

01: CONFIGURATION multiconfiged OF multiplexer8 IS
02: FOR multiconfig
03: FOR U0TO7
04: FOR ALL : mux

: USE ENTITY WORK.multiplexer (configurable);
05: FOR configurable
06: FOR ALL : n2
07: USE ENTITY WORK.nand2_t (delay2)
08: GENERIC MAP (5 NS, 3 NS);
09: END FOR;
10: END FOR;
11: END FOR;
12: END FOR;
13: END FOR;
14: END CONFIGURATION multiconfiged;
Figure 3.29 Multi-level Configuration Declaration

VHDL Constructs for Structural and Hierarchy Descriptions 99

 The component configuration on line 4 of Figure 3.29 specifies
that the configurable multiplexer of Figure 3.23 will be used for eight
generated mux instantiations.

Line 5 of Figure 3.29 is a block configuration that makes the ar-
chitecture body of configurable architecture of multiplexer visible. As
shown in Figure 3.23, this architecture has four instances of n2. Line
6 in Figure 3.29 starts a component configuration that binds the in-
stances of n2 in Figure 3.23 to nand2_t (delay2) and specifies its ge-
neric parameters.
 Figure 3.30 shows syntax constructs contained in configuration
declaration of Figure 3.29. The purpose of each construct is specified
here. For example it shows that the construct that begins on line 3
and end on line 12 is a block configuration that gives visibility to the
U0TO7 generate block of Figure 3.28.

Starts and
Ends in Line

Language
Structure

Visibility to: Binding to:

1-14 Configuration
Declaration

- -

2-13 Block
Configuration

multiplexer8
(multiconfig)
Architecture

-

3-12 Block
Configuration

U0TO7:
Generate

-

4-11 Component
Configuration

- multiplexer
(configurable)

5-10 Block
Configuration

multiplexer8
(multiconfig)
Architecture

6-9 Component
Configuration

- nand2_t
(delay2)

Figure 3.30 multiconfiged Configuration Declaration Language Structures

3.7.4 Indexing Block Configurations
A block configuration that applies to a generate statement can be in-
dexed to specify specific iterations of the generate statement. For ex-
ample, in Figure 3.31 FOR U0TO7(0) block configuration makes visi-
ble the body of the generate statement with iteration 0 and all bind-
ings in this block apply to this iteration. Further down in the code of
Figure 3.31, the FOR U0TO7(1 to 7) block configuration is used for
bindings of 1 to 7 iterations of ui instance of mux.

100 Chapter 3

CONFIGURATION differentlyconfiged OF multiplexer8 IS
 FOR multiconfig
 FOR U0TO7 (0)
 FOR Ui : mux
 USE ENTITY WORK.multiplexer (configurable);
 FOR configurable
 FOR U3 : n2
 USE ENTITY WORK.nand2_t (delay2)
 GENERIC MAP (3 NS, 2 NS);
 END FOR;
 FOR OTHERS : n2
 USE ENTITY WORK.nand2_t (delay2)
 GENERIC MAP (4 NS, 6 NS);
 END FOR;
 END FOR;
 END FOR;
 END FOR;
 FOR U0TO7 (1 TO 7)
 FOR Ui : mux
 USE ENTITY WORK.multiplexer (configurable);
 FOR configurable
 FOR ALL : n2
 USE ENTITY WORK.nand2_t (delay2)
 GENERIC MAP (8 NS, 5 NS);
 END FOR;
 END FOR;
 END FOR;
 END FOR;
 END FOR;
END CONFIGURATION differentlyconfiged;

Figure 3.31 Indexing Configurations for Generate Statements

3.7.5 Instantiating a Design Unit
Instantiation statements are used for using a design unit in an upper
level design. As previously discussed, instantiation of a component
can be done by direct instantiation or by instantiating a declared
component and providing binding for it. Regardless of the method
used, an actual component to which binding is done can be an entity-
architecture pair, or a configuration declaration. Figure 3.32 shows a
testbench that tests various multiplexers that we developed in this
chapter. Direct instantiations are used for all designs in this test-
bench. As shown, UUT1 through UUT5 instantiate multiplexer entity
architecture pairs, while UUT6 and UUT7 instantiate configuration
declarations that are written on top of the multiplexer entity.

VHDL Constructs for Structural and Hierarchy Descriptions 101

ENTITY multiplexer_tester IS
END ENTITY;
--
ARCHITECTURE timed OF multiplexer_tester IS
 SIGNAL a, b, s, w1, w2, w3, w4, w5, w6, w7 : BIT;
BEGIN
 UUT1:ENTITY WORK.multiplexer(direct) PORT MAP(a,b,s,w1);
 UUT2:ENTITY WORK.multiplexer(gates) PORT MAP(a,b,s,w2);
 UUT3:ENTITY WORK.multiplexer(alter) PORT MAP(a,b,s,w3);
 UUT4:ENTITY WORK.multiplexer(default)PORT MAP(a,b,s,w4);
 UUT5:ENTITY WORK.multiplexer(fixed) PORT MAP(a,b,s,w5);
 UUT6:CONFIGURATION WORK.configured PORT MAP(a,b,s,w6);
 UUT7:CONFIGURATION WORK.reconfigured PORT MAP(a,b,s,w7);
 a <= '0', '1' AFTER 020 NS,'0' AFTER 065 NS,
 '1' AFTER 179 NS;
 b <= '1', '0' AFTER 045 NS, '1' AFTER 105 NS,
 '0' AFTER 215 NS;
 s <= '0', '1' AFTER 129 NS, '0' AFTER 211 NS,
 '1' AFTER 245 NS;
END ARCHITECTURE timed;

Figure 3.32 Instantiating Design Units

3.8 Design Simulation
 A design that is compiled and fully configured without unbound
components, can be simulated. The design unit for simulation can be
a testbench architecture-entity pair such as that of Figure 3.32, or a
configuration declaration that configures a testbench. In either case,
the simulation model becomes a design entity in VHDL’s library that
a simulation tool can run. A top-level design entity for simulation
cannot have ports. We end this chapter by discussing simulation of
the multiplexer-tester and showing its simulation results.
 After successful compilation of timed architecture of multi-
plexer_tester of Figure 3.32, our VHDL simulation tool will show this
entity-architecture pair as a design unit in its WORK library. Simula-
tion begins by selecting this design unit and running the simulation
until it stops. Simulation continues until there are no more events
occurring in the design being simulated. Since we have limited data
on a, b, and s, this simulation ends a few nanoseconds after the last
change on an input occurs.
 Figure 3.33 shows simulation run result of testbench of Figure
3.32. In all eight designs s selects a or b, and with a small delay w1
through w7 outputs follow a or b depending on s. As shown, various
output delays are different and in some cases glitches of varying du-
rations appear on some outputs and not all outputs.

102 Chapter 3

Figure 3.33 Multiplexer Simulation Report

Note here that we are simulating the various gate level architectures
of the multiplexer, and delays and glitches depend on specific timing
values that are given to the gates. As expected, a NAND design of a
multiplexer that uses complementary reconvergent paths to the out-
put has potential hazards. In the designs being tested in Figure 3.32,
some outputs have hazards and some do not. It is recommended that
an interested reader would follow the gate level structures and delay
values used for UUT7 and UUT1 to understand why glitch appears
on w7 and not on w1.

3.9 Summary
This chapter focused on formation and configuration of upper level
structures based on lower level design units. The lower level design
example we used was a NAND gate, and we formed a multiplexer
based on that. Various forms of component specifications, configura-
tions, and delay parameter specifications were illustrated. We used
simple examples to avoid discussion of more complex language con-
structs and focus only on the structural descriptions. However, all
topics covered here apply to specification and configuration of designs
that are made of simple gate-level components or complex system-
level cores.

VHDL Constructs for Structural and Hierarchy Descriptions 103

Problems
3.1 Problems 1, 2 and 3 are related; read all three before you start
coding. In this problem you are to write a model for a T flip-flop using
std_logic. The flip-flop toggles on the falling edge of its clk input when
its T input is ‘1’. When T is ‘0’, the flip-flop state does not change. It
has tCQ1 and tCQ0 timing parameters that are for the output changing
to ‘1’ and ‘0’ respectively. The default values for these parameters are
3 ns and 5 ns and are passed to the flip-flop via its generic parame-
ters. Another generic parameter (tCmin , with a default of 30 ns) passes
the minimum clock period to the flip-flop. Write the complete VHDL
model of this flip-flop considering the output delay values. Generate a
timing check so that if the clock period falls below the minimum al-
lowed, tCmin, the flip-flop output becomes ‘X’.

3.2 Using the flip-flop of Problem 3.1 in the structure shown below
generate an n-bit unconstrained binary counter. Use generate state-
ments; use the AND operation for the AND gate. The size of your
counter must be adjustable when it is instantiated within an upper
level architecture. The right-most inputs of this structure must be
tied to ‘1’ for it to work. You can also use the right-most inputs as ac-
tive-high master-enable inputs for the entire counter.

3.3 Write a configuration declaration on top of your counter of Prob-
lem 3.2 to overwrite the timing parameters of the individual flip-flops
(tCQ1, tCQ0 and tCmin) to 3.5 ns, 5.5 ns and 33 ns.

3.4 Using only XOR gates, write a VHDL description for an 8-bit
even/odd parity checker. The circuit has an 8-bit input vector and two
outputs. The odd output is to become 1 when the number of 1s on the
input in odd. The even output is the opposite of the odd output. Use
generate statement (s).

3.5 A JK flip-flop with the following interface declaration is given:

ENTITY jkff IS
 GENERIC (tplh, tphl : TIME);
 PORT (j, k, c : IN BIT; q : OUT BIT);
END jkff;

a. Wire 8 of these flip-flops using a generate statement to form
an eight-bit D register. For each flip-flop, the D input con-
nects to the J input and its complement connects to the K in-
put. Use NOT operation for complementing the D inputs.

b. On top of the D register, write a configuration declaration to
bind the internal JK flip-flops of the 8-bit D register to behav-

104 Chapter 3

ioral architecture of a flip-flop with the same name, generics,
and ports in the work library.

3.6 In the following description, the configuration specification is
missing. Assume that the only component that you have available is
the nand3 (single_delay) model. Write appropriate configurations
such that this description implements function f(a,b,c,d,e).

 f (a, b, c, d, e) = a . b + c . d' + e

ENTITY function_f IS
 PORT (a, b, c, d, e : IN BIT; f : OUT BIT);

 END function_f;

 ARCHITECTURE configurable OF function_f IS
 COMPONENT n1 PORT (w: IN BIT; z: OUT BIT);
 END COMPONENT;
 COMPONENT n2 PORT (w, x: IN BIT; z: OUT BIT);
 END COMPONENT;
 COMPONENT n3 PORT (w, x, y: IN BIT; z: OUT BIT);
 END COMPONENT;
 ...
 SIGNAL i1, i2, i3, i4 : BIT;
 BEGIN
 g0 : n1 PORT MAP (d, i1);
 g1 : n1 PORT MAP (e, i2);
 g2 : n2 PORT MAP (i1, c, i3);
 g3 : n2 PORT MAP (a, b, i4);
 g4 : n3 PORT MAP (i2, i3, i4, f);
 END configurable;

Suggested Reading
Baker, Louis, VHDL Programming: With Advanced Topics, 1992,

Wiley Professional Computing, John Wiley & Sons Inc, ISBN: 978-
0792390305.

Bhasker, Jayaram, A VHDL Primer, 3rd edition, 1998, Prentice Hall
PTR, ISBN: 978-0130965752.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference
Manual, SH94983-TBR (print) SS94983-TBR (electronic), ISBN 0-
7381-3247-0 (print) 0-7381-3248-9 (electronic), 2002.

IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer
Level (RTL) Synthesis, SH95242 (print) SS95242 (electronic),
ISBN 0-7381-4064-3 (print) 0-7381-4065-1 (electronic), 2004.

Lipsett, Roger, and Cary Ussery, VHDL Hardware Description and
Design, 1st edition, 2001, Springer, ISBN: 978-0792390305.

105

4Concurrent Constructs for RT
Level Descriptions

The previous chapter discussed structural descriptions in VHDL. Al-
though complex structural constructs were discussed, constructs used
for description of individual components were simple and limited to
signal assignments. This chapter shows VHDL concurrent constructs
for description of more complex components. We discuss those con-
structs that can be useful for description of combinational and se-
quential register transfer level components.
 Although discussions of the previous chapter centered on basic
gate level components, they apply equally well to hardware parts of
higher complexities. This means that we can still apply structural
language constructs discussed in Chapter 3 to more complex compo-
nents that we will discuss in this chapter. We begin this chapter with
a presentation of various forms of signal assignments. Language is-
sues related to simple assignments used in the previous chapter are
first discussed, and then signal assignments with condition and selec-
tion options will be discussed. We will then talk about block state-
ments and guarded signal assignments. These constructs are useful
for modeling connection and disconnection of busses at various ab-
straction levels.

4.1 Concurrent Signal Assignments
A concurrent signal assignment is the most basic form of describing
hardware. We can use this structure for describing simple Boolean
expressions or complex sequential components. However, the limited

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

106 Chapter 4

syntax of this structure makes it more appropriate for describing
simple logical functions.
 A concurrent signal assignment has a left hand side signal and
an expression on the right hand side. Being a concurrent statement,
the execution of this construct is sensitive to its right hand side sig-
nals. When a right hand side signal changes value, the right hand
side expression is evaluated and a value is scheduled for the left hand
side signal.

4.1.1 Simple Assignments
The simplest form of a concurrent signal assignment is one without
any condition, which makes it a simple signal assignment. This form
of a concurrent signal assignment has a left hand side target signal
and an expression on the right.
 An example signal assignment is used in description of the ex-
pression architecture of multiplexer of Figure 4.1. As shown, an event
on a, b or s causes the AND-OR expression to be evaluated and a
value scheduled for w after 7 ns.

ENTITY multiplexer IS
 PORT (a, b, s : IN BIT; w : OUT BIT);
END ENTITY;
--
ARCHITECTURE expression OF multiplexer IS
BEGIN
 w <= (a AND NOT s) OR (b AND s) AFTER 7 NS;
END ARCHITECTURE expression;

Figure 4.1 Concurrent Signal Assignment

Figure 4.2 shows syntax details of this statement. The left hand side
is called a target and the right hand side is a waveform. The wave-
form construct can consist of several waveform_elements. A wave-
form_element, only one of which is used in our example, consists of an
expression this is optionally, followed by an AFTER keyword and a
time_expression.

Figure 4.2 Signal Assignment Syntax Structure

Concurrent Constructs for RT Level Descriptions 107

4.1.2 Conditional Signal Assignment
VHDL allows the use of a condition on the right hand side of a signal
assignment. The construct for this purpose is called a conditional sig-
nal assignment. This statement is shown in the conditional architec-
ture of multiplexer shown in Figure 4.3.

ARCHITECTURE conditional OF multiplexer IS
BEGIN
 w <= a AFTER 7 NS WHEN s='0' ELSE
 b AFTER 8 NS;
END ARCHITECTURE conditional;

Figure 4.3 Using Conditional Signal Assignment

As shown in Figure 4.4, a conditional signal assignment has a
left hand side target and a series of right hand side conditional wave-
forms. A conditional_waveform has a waveform followed by the
WHEN keyword, the condition and the ELSE keyword. The last con-
ditional waveform must be a waveform construct that is optionally
followed by a condition. In the example of Figure 4.4, the last wave-
form does not have a condition.

Figure 4.4 Syntax Structure of Conditional Signal Assignments

As another example of a conditional signal assignment consider
the async_reset architecture of flipflop shown in Figure 4.5. This cir-
cuit is a D-type flip-flop with asynchronous reset input.

As shown, two conditional waveforms are used on the right hand
side of qout. The first condition, i.e., reset=‘1’, is first checked and if it
is true a ‘0’ is put into qout. If reset is not ‘1’, then the second condi-
tion is checked, as the result of which din is put into qout. If none of
the conditions are true, then qout retains its old value, and thus a
memory behavior.

108 Chapter 4

ENTITY flipflop IS
 PORT (reset, din, clk : IN BIT; qout : OUT BIT);
END ENTITY;
--
ARCHITECTURE async_reset OF flipflop IS
BEGIN
 qout <= '0' WHEN reset = '1' ELSE
 din WHEN clk'EVENT AND clk = '1';
END ARCHITECTURE async_reset;

Figure 4.5 Flip-Flop Using Conditional Signal Assignment

ENTITY latch IS
 PORT (din, clk : IN BIT; qout : OUT BIT);
END ENTITY;
--
ARCHITECTURE assign OF latch IS
BEGIN
 qout <= din WHEN clk = '1';
END ARCHITECTURE assign;
--
ARCHITECTURE unaffect OF latch IS
BEGIN
 qout <= din WHEN clk='1' ELSE UNAFFECTED;
END ARCHITECTURE unaffect;

Figure 4.6 Conditional Signal Assignment Used in Latch Description

Another use of a conditional signal assignment is shown in the
assign architecture of latch of Figure 4.6. In this architecture when
an event occurs on din or clk, the right hand side is evaluated and if
at this time clk is ‘1’, then din is put into qout. Transparency of the
latch is implemented by the fact that while clk is ‘1’, changes on din
propagate to qout.
 The statement shown in the assign architecture leaves qout un-
affected when clk is not ‘1’. Alternatively, keeping the left hand side
unaffected can be explicitly specified by use of the UNAFFECTED
keyword. This is shown in the unaffect architecture of Figure 4.6. In
fact, this keyword may be used in place of any waveform construct
anywhere in a conditional signal assignment. For example, the condi-
tional signal assignment in the body of the unaffect architecture of
Figure 4.6 can be written as follows:

qout <= UNAFFECTED WHEN clk=’0’
 ELSE din;

Concurrent Constructs for RT Level Descriptions 109

Note that the above statement is only equivalent to that of the unaf-
fect architecture because clk is of type BIT and can only take ‘0’ or ‘1’
value.

4.1.3 Selected Signal Assignment
Another form of a concurrent signal assignment is a selected signal
assignment. In this structure, an expression selects one of several
waveforms. Figure 4.7 shows a binary decoder that is described with
a selected signal assignment.

ENTITY binary3to8decoder IS
 PORT (bin_in : IN BIT_VECTOR (2 DOWNTO 0);
 en : IN BIT;
 dcd_ou : OUT BIT_VECTOR (0 TO 7));
END ENTITY binary3to8decoder;
--
ARCHITECTURE selected OF binary3to8decoder IS
 SIGNAL tmp : BIT_VECTOR(dcd_ou'RANGE);
BEGIN
 WITH bin_in SELECT
 tmp <= "10000000" WHEN "000",
 "01000000" WHEN "001",
 "00100000" WHEN "010",
 "00010000" WHEN "011",
 "00001000" WHEN "100",
 "00000100" WHEN "101",
 "00000010" WHEN "110",
 "00000001" WHEN "111";
 dcd_ou <= tmp WHEN en = '1' ELSE (OTHERS => '0');
END ARCHITECTURE selected;

Figure 4.7 Using a Selected Signal Assignment

In this example, when an event occurs on bin_in, it is checked against
“000” to “111” in this order. These values (“000” to “111”) are called
choices. When a match is found between bin_in and one of the
choices, the waveform that corresponds to that choice is selected and
put into the left hand side signal, i.e., tmp.
 In addition to this statement, the code of Figure 4.7 has a condi-
tional signal assignment that conditionally assigns tmp to the decoder
output, dcd_ou. With the condition being en=’1’, this decoder becomes
a 3-to-8 decoder with an active high enable input.
 The right hand side of the conditional signal assignment uses
(OTHERS => ‘0’), which expands to as many zeros as the left hand
side, i.e., dcd_ou, requires.
 The syntax of the selected signal assignment of Figure 4.7 is
shown in Figure 4.8. This construct begins with the WITH keyword

110 Chapter 4

that is followed by an expression and the SELECT keyword. Follow-
ing this keyword is the left hand side target. On the right hand side of
the arrow selected waveforms separated by commas appear.

Figure 4.8 Syntax of Selected Signal Assignment

A selected waveform has a waveform and a choices part. The
waveform is as described before, and the choices consists of several
choice constructs separated by vertical bars (|). In our example we
only have one choice for every waveform.

The processing of this construct begins after the arrow and indi-
vidual choices are examined in the order that they appear (from left
to right). If by the time the last choice is examined, the value of ex-
pression is not matched, the target signal remains unaffected. To
avoid this situation the last choice can be specified to assign a default
value if none of the other choices match the expression. For doing
this, the last selected waveform should be as shown here:

“default_value” WHEN OTHERS;

 In our example of the decoder, since all eight combinations of the
3-bit bin_in are covered, the use of the default selected waveform is
not necessary. Using this default becomes especially useful when a
multi-value logic system (instead of BIT) is used.
 As an example of a selected signal assignment with default,
choices consider the assignment to display shown in Figure 4.9. This

Concurrent Constructs for RT Level Descriptions 111

is a seven segment display decoder that displays “0” through “9” and
an “E” for error if the input value is larger than 9.

ENTITY ssd IS
 PORT (bcd : IN BIT_VECTOR (3 DOWNTO 0);
 display : OUT BIT_VECTOR (1 TO 7));
END ENTITY;
--
ARCHITECTURE selected OF ssd IS
BEGIN
 WITH bcd SELECT
 display <= "1111110" WHEN "0000",
 "0110000" WHEN "0001",
 "1101101" WHEN "0010",
 "1111001" WHEN "0011",
 "0110011" WHEN "0100",
 "1101101" WHEN "0101",
 "1011111" WHEN "0110",
 "1110000" WHEN "0111",
 "1111111" WHEN "1000",
 "1111101" WHEN "1001",
 "1001111" WHEN OTHERS;
END ARCHITECTURE selected;

Figure 4.9 Selected Signal Assignment with Others

4.2 Guarded Signal Assignments
The previous section discussed signal assignments with a right hand
side that always drives its left hand side. We say that in the case of
signal assignments, the right hand side is always connected to the
left hand side. This section introduces guarded assignments that un-
der certain conditions the right hand side is disconnected from its left
hand side.

4.2.1 GUARD Signal and Expression
The keyword GUARDED can be used on the right hand side of the
arrow in a concurrent signal assignment to make a guarded signal
assignment. In this case an implicit or explicit GUARD signal con-
trols the connection of the right hand side of the signal assignment to
its left hand side.
 As an example of an explicit GUARD signal consider the explicit
architecture of flipflop shown in Figure 4.10. The code shown here is
another architecture for the flipflop entity of Figure 4.5. The explicit
BOOLEAN GUARD signal is declared in the declaration part of this
architecture. In the statement part of this architecture, an expression

112 Chapter 4

is assigned to the left hand side GUARD signal. This signal assign-
ment is like any other signal assignment, and because it is assigned
to GUARD, it is called a guard expression.

ARCHITECTURE explicit OF flipflop IS
 SIGNAL GUARD : BOOLEAN;
BEGIN
 GUARD <= clk = '1' AND NOT clk'STABLE;
 qout <= GUARDED '0' WHEN reset = '1' ELSE din;
END ARCHITECTURE explicit;

Figure 4.10 Explicit GUARD Signal

 The GUARDED keyword on the right hand side of the assign-
ment to qout in Figure 4.10, specifies that the right hand side wave-
form is only connected to qout when GUARD is TRUE. This signal
assignment is called a guarded signal assignment and is controlled by
the GUARD signal that is visible in the concurrent block that the as-
signment is in.
 As shown, the guard expression in Figure 4.10 becomes true
when clk is ‘1’ and it has not been stable. Here we are using the
‘STABLE signal attribute, the details of which are discussed in Chap-
ter 6. This expression causes GUARD to be true on the rising edge of
clk. When so, the right hand side of qout is connected to qout which
puts a ‘0’ into it when reset is ‘1’, or puts din into it if reset is not ‘1’.
Note that other than using the GUARDED signal, the right hand side
of qout is no different than that of a conditional signal assignment.
This signal assignment is sensitive to all its right hand side signals
and the GUARD signal.

4.2.2 Block Statement
Semantically, the body of an architecture is considered a concurrent
block. Similarly, the body of a generate statement described in the
previous chapter is a block. A block can also be specified explicitly
using a block statement. The body of a block statement is enclosed by
BLOCK and END BLOCK keywords. A block statement can optionally
include a guard expression that becomes the expression assigned to
its implicit GUARD signal. This signal becomes visible in the state-
ment part of the block statement.

Figure 4.11 shows the blocking architecture of flipflop entity.
This architecture is similar to the explicit architecture of Figure 4.10,
exact that it does not explicitly define the GUARD signal.

Syntax details of a block statement are shown in Figure 4.12.
The statement begins with a mandatory block label that is followed
by the BLOCK keyword.

Concurrent Constructs for RT Level Descriptions 113

ARCHITECTURE blocking OF flipflop IS
BEGIN
 reg: BLOCK (clk = '1' AND NOT clk'STABLE) BEGIN
 qout <= GUARDED '0' WHEN reset = '1' ELSE din;
 END BLOCK reg;
END ARCHITECTURE blocking;

Figure 4.11 Block Statement with Guard Expression

Figure 4.12 Block Statement Syntax

The optional guard expression follows this keyword. The part of the
block statement that is enclosed between the end of the guard expres-
sion and the BEGIN keyword contains the block header and block de-
clarative part. These parts are optional and not included in this ex-
ample.
 For consistency with other VHDL structures, VHDL allows the
use of the IS keyword after the guard expression. As with other con-
structs, the statement part of a block statement begins after the BE-
GIN keyword. This is a concurrent body of VHDL that can only con-
tain concurrent statements. Options and other forms of block state-
ments are illustrated in the examples that follow.

4.2.3 Block Statement Ports
The previous section discussed block statements from the point of
view of being able to provide a guard expression. In addition to this,
block statements can be used for grouping a series of concurrent
statement. Statements grouped as such do not have to use the same
guard expression, or any guard at all. This use of block statements is
similar to describing an architecture and grouping concurrent state-
ments in an architecture statement part. A component described as

114 Chapter 4

such must be instantiated, whereas statements within a block just
appear where they are used.
 To better establish the use of a block statement as a structure for
containing the description of a component, VHDL introduces the use
of ports and port maps for the block statement. Figure 4.13 shows
another architecture for the flipflop of Figure 4.5. This architecture
uses a block similar to blocking architecture of Figure 4.11. The block
statement in Figure 4.13, however, uses port specification to specify
port signals used within the block.

ARCHITECTURE blockport OF flipflop IS
BEGIN
 reg: BLOCk (clk = '1' AND NOT clk'STABLE) IS
 PORT (r, d, c : IN BIT; q : OUT BIT);
 PORT MAP (reset, din, clk, qout);
 BEGIN
 q <= GUARDED '0' WHEN r = '1' ELSE d;
 END BLOCK reg;
END ARCHITECTURE blockport;

Figure 4.13 Block Statement with Ports

A port map aspect maps signals external to the block to the ports
of the block. In our example, r, d, c, and q are local to the reg block
and reset, din, clk, and qout are visible through out the blockport ar-
chitecture. Local block ports cannot be used outside of the block, but
signals visible in the architecture are still visible within the block.

The PORT and PORT MAP constructs shown in Figure 4.13 con-
stitute the block header syntax construct of a block statement. In ad-
dition to this, the part of the block before the BEGIN keyword can
include a block declarative part. Constants, signals, files, and other
declarative items can appear in this part. Like block ports, declara-
tions in this part are only local to the block.

4.2.4 Nested Block Statements
Because block statements are concurrent statements, and the state-
ment part of a block statement is a concurrent body of VHDL, block
statements can be nested. This means that we can use a block state-
ment within another one.
 When nesting block statements, it is important to note that the
guard expression (if it exists) of an outer block does not automatically
transfer to the guard expression of an inner block. Transferring an
outer block guard expression to an inner block must be done by ex-
plicit use of the GUARD signal.

Concurrent Constructs for RT Level Descriptions 115

ENTITY latchflop IS
 PORT (din, clk : IN BIT; ql, qf : OUT BIT);
END ENTITY;
--
ARCHITECTURE nested OF latchflop IS
BEGIN
 lat: BLOCK (clk = '1') BEGIN
 ql <= GUARDED din;
 reg: BLOCK (GUARD AND NOT clk'STABLE) BEGIN
 qf <= GUARDED din;
 END BLOCK reg;
 END BLOCK lat;
END ARCHITECTURE nested;

Figure 4.14 Nested Block Statements

Figure 4.14 shows an entity-architecture pair of a hardware with a
latch and a flip-flop output. The ql output of latchflop is a transparent
latch output using clk as a level sensitive clock input, and the qf out-
put of this structure the flip-flop output that is sensitive to the rising
edge of the clk clock signal.
 The guard expression of the lat block in Figure 4.14 is clk=‘1’.
This expression is used for assigning din to ql. This expression trans-
fers to the guard expression of the reg block by use of the GUARD
signal in this guard expression. Recall that outside of the reg block
and within, the lat block, GUARD refers to the guard expression of
the lat block. When this expression is ANDed with NOT clk’STABLE,
the guard expression of the reg block becomes the rising edge of clk.

4.2.5 Guarded Signals
VHDL has the concept of guarded signals that are used with guarded
signal assignments that make blocks and guarded assignments even
more useful for description of various hardware structures.

4.2.5.1 Resolved Signals. Recall from the last section of Chapter 2
that VHDL has resolved signals that can have multiple concurrent
drivers. Associated with a resolved signal is a resolution function that
resolves between multiple values assigned to a signal. More details of
resolved signals, multiple drivers, and resolution functions will be
discussed in Chapter 6.

For the discussion of guarded signals and guarded assignments,
we use the VHDL predefined std_logic resolved type. In this discus-
sion, we limit the use of resolved signals to having only one concur-
rent driver.

116 Chapter 4

With a resolution function, there is a default resolved value. This
value becomes the value of the resolved signal if the signal has no
driver. This value is defined by the resolution function and may be
different from the default value of signal. The default resolved value
for std_logic type is ‘Z’.

4.2.5.2 Guarded Signals. A resolved signal can be declared to have
a kind. Kind specification follows the type mark of the resolved signal
in its declaration.

Kind of a signal can be BUS or REGISTER. If undriven or if a
disconnection occurs, a guarded signal of BUS kind receives its de-
fault resolved value, while an undriven REGISTER kind guarded
signal retains its old value (the value before disconnection).

4.2.5.3 Assignment to BUS Kind Signals. Figure 4.15 shows a mul-
tiplexer with three-state output. This multiplexer uses the standard
std_logic type which allows the use of the float value, ‘Z’.

In this code, we have used t as an intermediate signal represent-
ing the tri-state output of the multiplexer (see Figure 4.16). This sig-
nal is declared as a guarded signal of std_logic resolved type and BUS
kind. When e is ‘1’ the AND-OR expression on the right hand side of t
connects to t.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY multiplexer_en IS
 PORT (a, b, s, e : IN std_logic; w : OUT std_logic);
END ENTITY;
--
ARCHITECTURE blocking OF multiplexer_en IS
 SIGNAL t : std_logic BUS;
BEGIN
 tri: BLOCK (e='1') BEGIN
 t <= GUARDED (a AND NOT s) OR (b AND s);
 w <= t;
 END BLOCK tri;
END ARCHITECTURE blocking;

Figure 4.15 BUS Kind Guarded Signal

Concurrent Constructs for RT Level Descriptions 117

Figure 4.16 Hardware Corresponding to multiplexer_en

When e is ‘0’, disconnection happens on t that because of its BUS kind
makes it ‘Z’. Signal t directly drives w. VHDL allows an output port to
have a BUS kind specification. If this were done in our example, the
use of t would not be necessary.

4.2.5.4 Assignment to REGISTER Kind Signals. Figure 4.17 shows
a flip-flop description that uses the IEEE std_logic type for its inputs
and outputs. The blockport architecture of this example uses a local
signal ff of type std_logic and REGISTER kind to store flip-flop out-
put values.

Assignment of ‘0’ or d to ff takes place on the rising edge of clk.
In the absence of this condition, the guarded assignment to ff discon-
nects the right hand side expression of ff from ff. The REGISTER
kind causes a guarded signal to retain its old value when disconnec-
tion occurs. It is because of this property that the ff signal can be used
as a flip-flop output.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY stdflop IS
 PORT (reset, din, clk, cen : IN std_logic:='0';
 qout : OUT std_logic);
END ENTITY;
--
ARCHITECTURE blockport OF stdflop IS BEGIN
 reg: BLOCK (clk = '1' AND NOT clk'STABLE)
 PORT (r, d, c : IN std_logic; q : OUT std_logic);
 PORT MAP (reset, din, clk, qout);
 SIGNAL ff : std_logic REGISTER;
 BEGIN
 ff <= GUARDED '0' WHEN r = '1' ELSE d;
 q <= ff;
 END BLOCK reg;
END ARCHITECTURE blockport;

Figure 4.17 REGISTER Kind Guarded Signal

118 Chapter 4

An OUT port cannot be of a REGISTER kind. Therefore, in our
stdflop example of Figure 4.17, the use of ff as an intermediate signal
for the q output of the flip-flop is necessary.

The reg block in this example uses ff, and it is not necessary to
access this signal outside of this block. Because of this, ff is declared
in the declarative part of the reg block. In addition to being an exam-
ple for the use of REGISTER kind guarded signals, the example of
Figure 4.17 illustrates the use of block declarative items and is an-
other example of block statements with ports.

Another point illustrated here, is the use of cen in the stdflop en-
tity, but not in the blockport architecture. Since this signal is not be-
ing used, we like to have the option of associating OPEN with it when
stdflop is instantiated. VHDL only allows an IN port to be OPEN if a
default value is specified for it. The use of ‘0’ default value in stdflop
PORT (line 4) is for this purpose.

4.2.6 Timing Disconnections
While, the AFTER clause can be used to delay assignments to
guarded signals, this construct cannot be used for disconnections. In-
stead, the DISCONNECT construct of VHDL can be used for this
purpose. Disconnection specification is a block declarative item that
can appear in a block statement or architecture declarative part. This
construct uses a time value to delay disconnection to the specified
guarded signal.

Figure 4.18 shows another architecture for the multiplexer of
Figure 4.17. In the timedisconnect architecture, disconnections to t
are delayed by 3.25 ns. This means that after e becomes ‘0’, there is
still a 1.25 ns time before t gets its default resolution value (i.e., ‘Z’).

ARCHITECTURE timedisconnect OF multiplexer_en IS
 SIGNAL t : std_logic BUS;
 DISCONNECT t : std_logic AFTER 3.25 NS;
BEGIN
 tri: BLOCK (e='1') BEGIN
 t <= GUARDED (a AND NOT s) OR (b AND s);
 w <= t;
 END BLOCK tri;
END ARCHITECTURE timedisconnect;

Figure 4.18 Multiplexer with Disconnect Time

 Before we close this section, we use a simulation example to
show a small testbench and at the same time show simulation results
of the timedisconnect architecture.

Concurrent Constructs for RT Level Descriptions 119

 Figure 4.19 shows our timed architecture for a testbench for the
multiplexer_en entity. UUT1 and UUT2 in this architecture are in-
stantiation of multiplexers of Figure 4.15 and Figure 4.18 respec-
tively. The outputs of the multiplexers are w1 and w2.

ENTITY multiplexer_en_tester IS
END ENTITY;
--
ARCHITECTURE timed OF multiplexer_en_tester IS
 SIGNAL a, b, s, e, w1, w2 : std_logic;
BEGIN
 UUT1: ENTITY WORK.multiplexer_en (blocking)
 PORT MAP (a, b, s, e, w1);
 UUT2: ENTITY WORK.multiplexer_en (timedisconnect)
 PORT MAP (a, b, s, e, w2);
 a <= '0', '1' AFTER 20 NS, '0' AFTER 45 NS,
 '1' AFTER 71 NS;
 b <= '1', '0' AFTER 11 NS, '1' AFTER 37 NS,
 '0' AFTER 79 NS;
 s <= '0', '1' AFTER 29 NS, '0' AFTER 67 NS,
 '1' AFTER 97 NS;
 e <= '0', '1' AFTER 33 NS, '0' AFTER 83 NS,
 '1' AFTER 99 NS;
END ARCHITECTURE timed;

Figure 4.19 Comparing Disconnection Timing

In this testbench e becomes ‘0’ causing disconnections in both multi-
plexer architectures at time 83 ns. The simulation result of the test-
bench of Figure 4.19 is shown in Figure 4.20. As shown here, as the
result of e becoming ‘0’, w1 becomes ‘Z’ at 83 ns, while w2 becomes ‘Z’
3.25 ns later at 86.25 ns. The specified disconnection time does not
affect the timing of values that are assigned to a signal.

Figure 4.20 Comparing Disconnection Times

120 Chapter 4

4.3 Summary
The focus of this chapter was on concurrent bodies of VHDL. We dis-
cussed signal assignments, block statements, and guarded signals
and guarded assignments. The constructs discussed here enable de-
scription of hardware at a level higher that what was discussed in the
previous chapter. However, for more behavioral descriptions VHDL
offers sequential statements within concurrent bodies that will be
discussed in the next chapter.

Problems
4.1 Use guarded signal assignments to describe a simple latch with
q and NOT q outputs that function the same as a latch formed by
cross-coupled NOR gates with clocked inputs. Use reasonable delay
values.

4.2 Use two of the latches in Problem 4.1 and necessary logic opera-
tions to describe a master-slave JK flip-flop.

4.3 Use guarded block statements to describe an 8-bit shift register.
The structure has a serial input for right shifting the data and a sin-
gle serial output. All activities are synchronized with the leading edge
of the clock.

4.4 Use guarded block statements to describe an 8-bit up-down
counter with a 2-bit mode select input, an 8-bit parallel data input,
and an 8-bit data output. The unit performs an increment by 1 if the
mode is 01, decrement by 1 if the mode is 10, and a parallel load of
the eight bit input if the mode is 11. All activities are synchronized
with the leading edge of the clock.

4.5 Write a description for a universal 8-bit shift register with a 2-
bit mode select input, an 8-bit parallel data input, and an 8-bit data
output. The unit performs a right shift if the mode is 01, left shift if
the mode is 10, and a parallel load of the eight bit input if the mode is
11. All activities are synchronized with the leading edge of the clock.
Use BLOCK statements or conditional signal assignments.

4.6 Write a description for a clocked T-type flip-flop. If T is '1' on
the rising edge of the clock, the outputs of the flip-flop toggle.

4.7 Write a VHDL description for a rising edge trigger D-type flip-
flop with asynchronous set and reset inputs and two outputs. Label

Concurrent Constructs for RT Level Descriptions 121

the data, clock, set and reset inputs d, c, s and r, respectively. Active
s or r input override the clocked values on the d input; s and r cannot
simultaneously be active. Changes on d without the rising edge of c
have no effect on the q and qb outputs of the flip-flop. Use delay pa-
rameters sq_delay, rq_delay, and cq_delay for setting, resetting, and
clocking the flip-flop, respectively. Develop a test bench for testing
this flip-flop. Generate a simple periodic clock using a conditional
signal assignment.

4.8 Using guarded block statements write a VHDL description for a
falling edge trigger D-type flip-flop with a synchronous set input and
a q output. Label the data, clock, and set inputs d, clk, s, respectively.
Use delay parameters sq_delay, and cq_delay for setting and clocking
the flip-flop, respectively. Develop a test bench for testing this flip-
flop. Generate a simple periodic clock using a conditional signal as-
signment.

4.9 Using guarded block statements write a VHDL description for a
falling edge trigger D-type flip-flop with an asynchronous set input, a
clock-enable input, and a q output. Develop a test bench for testing
this flip-flop. Generate a simple periodic clock using a conditional
signal assignment.

4.10 Show the complete description of a datapath with 3 rising edge
trigger 8-bit registers (r1, r2, r3), 3 internal three-state 8-bit busses
(rbus, obus, addbus) a three-state input bus, inbus, an 8-bit outbus
that connects to obus, and an ALU capable of either adding or sub-
tracting two 8-bit numbers. The control signals coming from the con-
troller are inbus_on_rbus, alu_on_rbus, r2_on_obus, r3_on_obus,
load_r1, load_r2, load_r3, sel_add, sel_sub. The function of each of
these control lines is as its name implies; sel_add and sel_sub control
the functions of the ALU. Considering the ENTITY declaration shown
below, complete the description of this data path. Use BLOCK state-
ments or conditional signal assignments.

ENTITY datapath IS
 PORT (inbus : IN std_logic_vector (7 DOWNTO 0);
 outbus : OUT std_logic_vector (7 DOWNTO 0);
 clk : IN std_logic;
 inbus_on_rbus, alu_on_rbus, r2_on_obus,
 r3_on_obus : IN std_logic;
 load_r1, load_r2, load_r3,
 sel_add, sel_sub : IN std_logic);
END ENTITY;

122 Chapter 4

Suggested Reading
Baker, Louis, VHDL Programming: With Advanced Topics, 1992,

Wiley Professional Computing, John Wiley & Sons Inc, ISBN: 978-
0792390305.

Bhasker, Jayaram, A VHDL Primer, 3rd edition, 1998, Prentice Hall
PTR, ISBN: 978-0130965752.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference
Manual, SH94983-TBR (print) SS94983-TBR (electronic), ISBN 0-
7381-3247-0 (print) 0-7381-3248-9 (electronic), 2002.

IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer
Level (RTL) Synthesis, SH95242 (print) SS95242 (electronic),
ISBN 0-7381-4064-3 (print) 0-7381-4065-1 (electronic), 2004.

Lipsett, Roger, and Cary Ussery, VHDL Hardware Description and
Design, 1st edition, 2001, Springer, ISBN: 978-0792390305.

Perry, Douglas L., VHDL: Programming by Example, 4th edition,
2002, McGraw-Hill Professional, ISBN: 978-0071400701.

123

5Sequential Constructs for RT Level
Descriptions

VHDL sequential constructs refer to the language constructs that
execute in sequence. This means that while at the top-level a hard-
ware component is described by interconnection of concurrent sub-
components, an individual component may be described by the use of
sequential statements. The group of sequential statements used for
this description executes concurrent with other sub-components of the
hardware system. Because human think sequential, VHDL sequen-
tial bodies provide a convenient means for describing components at
the behavioral level.
 This chapter focuses on VHDL sequential bodies and constructs.
We start with the main sequential body of VHDL, that is a process
statement, and continue our discussion with functions and proce-
dures. The same constructs are used in process statements, functions
and procedures. The last part of this chapter is dedicated to design
organization, packaging parts and utilities, and VHDL libraries.

5.1 Process Statement
A signal assignment in the statement part of an architecture is a
process which is always active and executes concurrent with other
processes within the same architecture. This process has a single tar-
get, and executes when an event occurs on one of the signals on its
right hand side. Therefore, it is said to be sensitive to signals on the
right hand side of the signal assignment. A different kind of a process
is a process statement which is also active at all times, executing con-

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

124 Chapter 5

currently with other processes, but can be made sensitive to selected
signals.
 A process statement can assign values to more than one signal
and can contain sequential statements. This statement begins with
the PROCESS keyword and ends with END PROCESS. As shown in
Figure 5.1, a process statement has a declarative part and a state-
ment part. All constructs allowed in the declarative and statement
parts of subprograms can also be used in process statements.

Figure 5.1 A Process Statement Block Diagram

5.1.1 Declarative Part of a Process
Variable, file, and constant objects can be declared in the declarative
part of a process. Such objects are only visible to the process within
which they are declared. Signals and constants declared in the de-
clarative part of an architecture that encloses a process statement
can be used inside a process. Such signals are the only means of com-
munication between different processes.
 Initialization of objects declared in a process is done only once at
the beginning of a simulation run. These objects stay alive for the en-
tire simulation run. This way a variable declared in a process can be
used to hold memory status or the internal state of a hardware sys-
tem.

Sequential Constructs for RT Level Descriptions 125

5.1.2 Statement Part of a Process
The statement part of a process is sequential, always active, and it
executes in zero time. The following paragraphs and examples elabo-
rate on these concepts.
 Only sequential statements are allowed in the statement part of
a process. These statements provide high level program flow control
for assignment of values to signals and variables. For selection and
assignment of values to signals, if, loop or case statements can be
used. Although the syntax of several concurrent and sequential
statements is the same, concurrent statements are not allowed in the
statement part of a process statement. Conditional and selected sig-
nal assignments are strictly concurrent, and they cannot be used in a
process statement.
 As depicted in Figure 5.2, program flow inside a process starts at
the beginning of its statement part and proceeds toward the end of
this part. Statements reached by the program flow are executed se-
quentially in zero time. Unless suspended by implicit or explicit wait
statements, a process repeats forever.

Figure 5.2 A Process Runs in Zero Time, Repeats Forever, Unless Suspended

Consider for example the partial code in Figure 5.3. In this ex-
ample, the assignment of a to x is executed before assigning b to y.
Both assignments schedule values to their left hand side targets,
which will appear one delta time later. In order for these values to
take place, the process must be suspended at least for one delta time.
Otherwise, since it takes zero time to reach the end of the process and
loop back to its beginning, by the time the program flow reaches the

126 Chapter 5

first statement of the process, new values assigned in the previous
iteration will not show on the left hand side signals.

ARCHITECTURE sequentiality_demo OF partial_process IS
BEGIN
 PROCESS
 BEGIN
 ...
 x <= a;
 y <= b;
 ...
 END PROCESS;
END sequentiality_demo;

Figure 5.3 Zero Distance Signal Assignments

 A partial code, demonstrating the availability of data assigned to
signals, is shown in Figure 5.4. In this figure, we assume that the
value of x is '0' before the flow of the program reaches the signal as-
signment that uses x on the left hand side. Execution of this state-
ment causes '1' to be scheduled for the x target after a delay. The if
statement in this figure is executed immediately after the execution
of the signal assignment. Since these two statements are executed
during the same simulation cycle (in zero time), the new value of x is
not available when the if statement is executed.

ARCHITECTURE data_availability_demo OF partial_process IS
 SIGNAL x : BIT :=’0’;
BEGIN
 PROCESS BEGIN
 ...
 x <= '1';
 IF x = '1' THEN

Perform_action_1
 ELSE

Perform_action_2
 END IF;
 ...
 END PROCESS;
END data_availability_demo;

Figure 5.4 Partial Code for Demonstrating Delay in Assignment of Values to Signals

The condition of this statement, therefore, will not be satisfied and
action_2 is performed. Had x been a variable, the symbol := would
have to be used to assign a value to it, and its new value, '1', would be
available when the if statement is executed. In that case, action_1
would have been performed.

Sequential Constructs for RT Level Descriptions 127

5.1.3 Process Sensitivity List
A process statement is always active and executes at all times if not
suspended. A mechanism for suspending and subsequently condition-
ally activating a process is the use of sensitivity list. Following a
PROCESS keyword, a list of signals in parentheses can be specified;
this list is called the sensitivity list, and the process is activated when
an event occurs on any of these signals. When the program flow
reaches the last sequential statement, the process becomes sus-
pended, although alive, until another event occurs on a signal that it
is sensitive to.

Regardless of the events on the sensitivity list signals, a process
is executed once at the beginning of a simulation run.

Behaviorally, the example description depicted in Figure 5.5 is
the same as that of Figure 4.1 of the previous chapter. In both cases,
an event on a, b, or s wakes up the process and depending on the
value of s, a or b is assigned to w. Another process that is behavior-
ally equivalent to the process statement of Figure 5.5 is the condi-
tional signal assignment of Figure 4.3.

ENTITY multiplexer IS
 PORT (a, b, s : IN BIT; w : OUT BIT);
END ENTITY;
--
ARCHITECTURE processing OF multiplexer IS
BEGIN
 com: PROCESS (a, b, s) BEGIN
 IF s='0' THEN w <= a AFTER 1.4 NS;
 ELSE w <= b AFTER 1.5 NS;
 END IF;
 END PROCESS com;
END ARCHITECTURE processing;

Figure 5.5 Multiplexer Described Using a Process with Sensitivity List

As another process statement with sensitivity list, consider the
synch_process architecture of flipflop of Figure 5.6. The reg process
shown here wakes up when an event occurs on clk. With this event if
clk is ‘1’, a ‘0’ or din is assigned to qout. This behavior implements a
rising edge D-type flip-flop with a synchronous reset input.

Figure 5.7 shows the syntax details for the process statement
used in the description of Figure 5.6. The label of a process, which
precedes this statement, is optional. If used, it can also be placed at
the end of the process statement. The sensitivity list is also optional
and can contain any number of signals that are visible outside of the
process. Objects declared inside a process cannot be used in its sensi-
tivity list for that process.

128 Chapter 5

ENTITY flipflop IS
 PORT (reset, din, clk : IN BIT; qout : OUT BIT);
END ENTITY;
--
ARCHITECTURE synch_process OF flipflop IS BEGIN
 reg: PROCESS (clk) BEGIN
 IF (clk = '1') THEN
 IF reset = '1' THEN qout <= '0';
 ELSE qout <= din;
 END IF;
 END IF;
 END PROCESS reg;
END ARCHITECTURE synch_process;

Figure 5.6 flipflop Using Process with Sensitivity List

 As shown in Figure 5.7, only sequential statements are allowed
in the statement part of a process, whereas, the process statements
themselves are considered concurrent statements. This implies that
processes cannot be nested. Where nesting of behavioral sequential
bodies is necessary, procedures can be called from processes. It is, of
course, possible to nest procedures since procedure calls are both con-
current and sequential statements. Procedures are discussed in Sec-
tion 5.3.

Figure 5.7 Syntax of Process with Sensitivity List

Sequential Constructs for RT Level Descriptions 129

The sequential statement used in the body of the reg process is
an if statement that contains another if statement. The condition of
the outer if statement is (clk = ‘1’) and the condition of the enclosed if
statement is reset = ‘1’. Any number of sequential statements with
any level of nesting can be used in the statement part of a process
statement.

As another example of a process statement, consider the
async_process architecture of Figure 5.8. Unlike the process state-
ment of Figure 5.6 that only used the clock, the process statement
shown here uses clk and reset in its sensitivity list. Another difference
between these two examples is that the reset = ‘1’ condition precedes
the clock condition in Figure 5.8. This means that when an activity
occurs on reset, the process of Figure 5.8 wakes up and it first checks
the value of reset regardless of clk. This behavior makes the
asynch_process architecture of flipflop a D-type flip-flop with an ac-
tive high asynchronous reset input.

ARCHITECTURE asynch_process OF flipflop IS
BEGIN
 reg: PROCESS (clk, reset) BEGIN
 IF reset = '1' THEN
 qout <= '0' AFTER 1.2 NS;
 ELSIF (clk = '1' AND clk'EVENT) THEN
 qout <= din AFTER 1.3 NS;
 END IF;
 END PROCESS reg;
END ARCHITECTURE asynch_process;

Figure 5.8 Process Statement Implementing Asynchronous Control

The statement part of the process of Figure 5.8 contains an if
statement with ELSIF part. The syntax used here is different than
that of Figure 5.6 in that no nesting of if statements is done here.

5.1.4 Postponed Processes
In the multiplexer example shown in Figure 5.5, if in a real time
point but at different delta time points, a, b and s change, the com
process will be activated at each delta time. At each such activation,
the process is executed, values calculated, and reports will be made if
there are any. The very last activation, however, will overwrite all
calculated values and values for that real time frame will become sta-
ble.
 Two problems can be caused by multiple activation of a process
statement in a given real time point. One is that of generating false
reports based on transitional non steady-state input data, and the

130 Chapter 5

other is unnecessary executions of the process statement leading to
slower simulation runs.
 A postponed process can remedy these problems by activating a
process statement only once per real-time point after all sensitivity
list signals have become stable. Figure 5.9 shows the timing of the
com process in Figure 5.5. For the timing shown in this figure, the
non-postponed process is activated four times during the t1 real time.
The first time because s is ‘0’, and a has become ‘1’, it schedules a ‘1’
into w. The second time s becomes ‘1’ and it schedules the ‘0’ value of
b into w. The third time that s becomes 0, it reads a again and puts a
‘1’ into w. The last time that the process wakes up is when b becomes
‘1’ at time t1+4 . At this time, because s is ‘0’, the value of a that is a
‘1’ will be again scheduled for w. The end result is that w becomes ‘1’
after four times execution of this process.

Figure 5.9 Activation of a Postponed Process

 The com postponed process statement, the header of which is
shown on the right in Figure 5.9, only wakes up once during t1 and
that is after all but the last simulation cycle has completed. As with
the other process, this postponed process still result in a ‘1’ in w. For
this process, this value is calculated once without unnecessary execu-
tions of the process statement.
 Concurrent statements are sensitive to activities on their right
hand sides much the same way as processes are sensitive to their sen-
sitivity list. Such statements may also be postponed by using the
POSTPONED keyword on the left hand side of the statement.

Sequential Constructs for RT Level Descriptions 131

The following statement, is processed only once during a real time
point after all right hand side signals become stable.

concurrent1: POSTPONED w <= (a AND NOT s) OR (b AND s);

5.1.5 Passive Processes
A process statement or a concurrent statement that does not include
any signal assignment is a passive process. Such a process may be
used in the statement part of an entity declaration. For demonstra-
tion of this concept we add several timing checks to the entity de-
scription of flipflop of Figure 5.6.
 Figure 5.10 shows the flipflop entity that has the timing process
in its statement part. Several timing variables for keeping track of
events and durations on clk are defined in the declarative part of this
process. Note in this process statement that no signal assignments
are taken place. Because these timing checks are included in the
statement part of an entity, they apply to all architectures that are
associated with it.

ENTITY flipflop IS
 PORT (reset, din, clk : IN BIT; qout : OUT BIT);
BEGIN
 timing: PROCESS (clk, reset, din)
 VARIABLE t_clk1, t_clk0 : TIME := 0 NS;
 VARIABLE t_clkon, t_clkoff : TIME := 0 NS;
 BEGIN
 IF clk'EVENT THEN
 IF clk = '1' THEN --rising edge
 t_clk1 := NOW;
 t_clkoff := t_clk1 - t_clk0;
 ELSE --faling edge
 t_clk0 := NOW;
 t_clkon := t_clk0 - t_clk1;
 END IF;
 END IF;
 IF t_clkon /= t_clkoff THEN
 REPORT "Not 50% duty cycle: On:"
 & TIME'IMAGE(t_clkon) & "Off:"
 & TIME'IMAGE(t_clkoff);
 END IF;
 IF clk = '1' AND din'EVENT THEN
 REPORT "The din input changed while clk was '1'";
 END IF;
 END PROCESS timing;
END ENTITY;

Figure 5.10 Entity Statement with a Passive Process

132 Chapter 5

 In the first part of this process statement, times at which transi-
tions of clk take place are recorded. For this purpose VHDL’s NOW
function that returns the simulation real time is used. Using these
time marks, on and off durations of clk are calculated. In the second
part of the process duty cycles that are not 50% of the clock cycle are
reported using the report statement. The report statement begins with
the REPORT keyword and it is a sequential statement.

We use the ‘IMAGE construct to report the clock on and off
times. When used with a type mark, ‘IMAGE returns the value of its
argument in the string form. Concatenation of strings corresponding
to the on and off times with a message string are displayed if t_clkon
and t_clkoff are different. Another if statement, near the end of the
timing process, reports changes on din that occur while clk is ‘1’.

5.2 Sequential Wait Statements
The wait statement is a highly behavioral construct for modeling de-
lays, handshakings, and hardware dependencies. This statement
comes in four different forms and can be used only in procedures and
processes that do not have the optional sensitivity list. When a pro-
gram flow reaches a wait statement, the process or procedure that
encloses it is suspended. The sequential body resumes after the condi-
tions specified by the wait statement are met.
 Five forms of the wait statement are shown here:

WAIT FOR waiting_time;
WAIT ON waiting_sensitivity_list;
WAIT UNTIL waiting_condition;
WAIT FOR 0 any_time_unit;
WAIT;

WAIT FOR causes suspension of a sequential body until the
waiting_time elapses. The suspension caused by WAIT ON is re-
sumed when an event occurs on any of the signals in the wait-
ing_sensitivity_list. If a sequential body is suspended by a WAIT UN-
TIL, that body is resumed when an event occurs on the wait-
ing_condition and the value of this condition is TRUE after the event.
If the flow of program reaches a WAIT UNTIL when the wait-
ing_condition is TRUE, suspension occurs, and resumption does not
occur until an event causes the evaluation of condition. The forth
form of wait statement, WAIT FOR 0 time, suspends a process for
exactly one delta time (one simulation cycle). Counting delta times is
possible by using this statement in a loop. Any valid time unit such as
FS or NS can be used for the 0 time value. Finally, the last form of
wait statement, WAIT, suspends a process forever.

Sequential Constructs for RT Level Descriptions 133

Wait statements were presented here as individual constructs.
Although, it is easier to describe and use them as such, VHDL for-
mally defines WAIT as a construct with sensitivity clause, condition
clause and timeout clause as shown below:

WAIT ON sensitivity_list UNTIL condition FOR time;

When a process is suspended by a wait statement, the resumption of
the process occurs when an event occurs on a signal in the sensitivity
list, and the condition is true and the specified time elapses.
 If any of the wait clauses is not specified, that requirement for
resumption of the process will be removed. The three clauses act in-
dependently with the exception of the condition clauses, which when
specified adds implicit sensitivity signals from signals in its condition
to a sensitivity clause. For example assuming a_signal is a signal and
a_variable is a variable, the statement,

WAIT UNTIL a_signal AND a_variable = ‘1’;
becomes

WAIT ON a_signal UNTIL a_signal AND a_variable = ‘1’;

while,

WAIT UNTIL a_variable = ‘1’;

remains as such with no sensitivity requirement. A process sus-
pended by this construct resumes when a_variable becomes ‘1’.

The description here explains the earlier simpler description of
WAIT UNTIL when we discussed it independent of the sensitivity
clause.
 The sensitivity list of a process statement is equivalent to a
WAIT ON statement placed at the end of the statement part of the
process. The waiting_sensitivity_list in this statement is the list of
signals that would appear in the process sensitivity list. Therefore,
the sensitivity list provides a simple, yet limited way of suspending
and activating a process; the more general method is the use of wait
statements. The two methods cannot be combined. For example the
process statement,

PROCESS (a, b, c) . . .

is equivalent to one without the a, b, c sensitivity list, and with

WAIT ON a, b, c;

134 Chapter 5

as its last sequential statement. No other wait statement can appear
in the former process.
 As our first wait statement example consider the process_wait
architecture of multiplexer shown in Figure 5.11. This description is
equivalent to the processing architecture of Figure 5.5. At time 0, this
process executes once and goes into suspension when the WAIT ON
statement is reached. An event on a, b, or s wakes up this process and
runs its body once.

ARCHITECTURE process_wait OF multiplexer IS
BEGIN
 com: PROCESS
 BEGIN
 IF s='0' THEN
 w <= a AFTER 1.4 NS;
 ELSE
 w <= b AFTER 1.5 NS;
 END IF;
 WAIT ON a, b, s;
 END PROCESS com;
END ARCHITECTURE process_wait;

Figure 5.11 Process with WAIT

 Another example of a process statement with WAIT is the
synch_waituntil architecture of flipflop shown in Figure 5.12. This
architecture implements a D-type flip-flop with a synchronous reset
similar to the architecture of Figure 5.7. Using the WAIT UNTIL in-
stead of sensitivity list allows the use of other WAIT statements in
this architecture. As shown, we have used a WAIT FOR statement for
adjusting the timing of this flip-flop. Because of this statement, a ris-
ing edge of clk that is distanced from its previous one less than 1.5 ns,
is ignored.

ARCHITECTURE synch_waituntil OF flipflop IS
BEGIN
 reg: PROCESS
 BEGIN
 IF reset = '1' THEN
 qout <= '0' AFTER 1.2 NS;
 ELSE
 qout <= din AFTER 1.3 NS;
 END IF;
 WAIT FOR 1.5 NS;
 WAIT UNTIL clk = '1';
 END PROCESS reg;
END ARCHITECTURE synch_waituntil;

Figure 5.12 Multiple WAIT Statements

Sequential Constructs for RT Level Descriptions 135

5.3 VHDL Subprograms
VHDL subprograms can be used in designs for defining hardware
sub-modules, as well as utility functions for applications such as type
conversions and input/output. This section discusses definition and
usage of subprograms in VHDL.
 In many programming languages, subprograms are used to sim-
plify coding, modularity, and readability of descriptions. VHDL uses
subprograms for these applications as well as for those that are more
specific to hardware descriptions. Furthermore, VHDL subprograms
are used for adaptation of various data types to standard VHDL op-
erators. Regardless of the application, behavioral softwarelike con-
structs are allowed in subprograms. VHDL allows two forms of sub-
programs, functions and procedures. Functions return values and
cannot alter the values of their parameters. A procedure, on the other
hand, is used as a statement and can alter the values of its parame-
ters.

5.3.1 Function Definition
Many of the features of the VHDL language that are related to func-
tions can be demonstrated by the mux function of Figure 5.13. This
function performs multiplexing and will be used later for developing
another architecture for our multiplexer.

FUNCTION mux
 (databits : BIT_VECTOR; sel : BIT_VECTOR)
RETURN BIT IS
 VARIABLE selint : INTEGER := 0;
BEGIN
 FOR i IN sel'LENGTH - 1 DOWNTO 0 LOOP
 IF sel (i) = '1' THEN
 selint := selint + 2**i;
 END IF;
 END LOOP;
 RETURN databits (selint);
END FUNCTION mux;

Figure 5.13 A Simple Function Definition

 Syntax details of this function are shown in Figure 5.14. The dis-
cussion below refers to this figure. As shown here, the function desig-
nator is mux, its formal parameters are databits and sel, and its re-
turn type mark is BIT. The type for databits and sel is BIT_VECTOR.
Dimensions for these parameters are not explicitly specified, and will
be known when the function’s formal parameters are associated with
the actual parameters when the function is invoked.

136 Chapter 5

Figure 5.14 Function Syntax Details

The function declarative part includes declaration of selint vari-
able. Variables but not signals can be declared in a declarative part of
a function.
 The statement part of this function consists of sequential state-
ments. The two sequential statements used here are a sequential for-
loop and a return statement. The index variable of the for-loop state-
ment is i and looping is done for length of sel down to 0. The
‘LENGTH attribute reads the length of the array it is applied to. The
for-loop statement encloses another sequential statement. This
statement is an if-then statement that calculates the integer value of
sel and places it in selint. The return statement in the statement part
of mux returns the bit of databits selected by selint.

Figure 5.15 shows how function mux of Figure 5.13 is called. As
shown, in order to be able to use mux, it has been placed in the de-
clarative part of functional architecture of multiplexer. The last line
in the statement part of this architecture is a signal assignment that
uses mux on its right hand side. When a function is called, it returns
its calculated value in zero time. Because of this, and in order for this
description to better represent the actual circuit, the value returned
by the function is delayed 8 ns before it is assigned to the output of
the circuit.

Sequential Constructs for RT Level Descriptions 137

ARCHITECTURE functional OF multiplexer IS

 FUNCTION mux (databits : BIT_VECTOR; . . .
 .
 .
 .
 END FUNCTION mux;
 SIGNAL sel : BIT_VECTOR (0 DOWNTO 0);
BEGIN
 sel(0) <= s;
 w <= mux ((a,b), sel) AFTER 8 NS;
END ARCHITECTURE functional;

Figure 5.15 Calling a Function

5.3.2 Procedure Definition
We use the consecutive_data procedure of Figure 5.16 to illustrate
how procedures are defined and utilized. This simple example shows
the use of declarations, assignments, and sequential statements in
procedures.

PROCEDURE consecutive_data
 (SIGNAL target : OUT BIT_VECTOR;
 CONSTANT ti : TIME; CONSTANT n : INTEGER)
IS
 VARIABLE data : BIT_VECTOR (target'RANGE);
 VARIABLE sum, carry : BIT;
BEGIN
 FOR i IN 1 TO n LOOP
 carry := '1';
 FOR j IN data'REVERSE_RANGE LOOP
 sum := data (j) XOR carry;
 carry := data (j) AND carry;
 data (j) := sum;
 END LOOP;
 target <= TRANSPORT data AFTER ti * i;
 END LOOP;
END PROCEDURE consecutive_data;

Figure 5.16 Procedure Definition

 The consecutive_data procedure has an output signal of type
BIT_VECTOR. This output is target that is a parameter of the proce-
dure. All other parameters of this procedure are inputs. When called,
n consecutive binary numbers starting from 0 are placed on target.
The n data sets are distanced in time by ti. This procedure is useful in
developing testbenches.

138 Chapter 5

 The declarative part of consecutive_data declares data, sum, and
carry intermediate variables. The type of the data variable is
BIT_VECTOR, and its size is taken from that of target. The ‘RANGE
attribute, that is applied to target, reads the range of the actual sig-
nal that will be associated with target when the procedure is called.
 A for-loop in the statement part of this procedure loops n times,
each time putting data into target. The delay mechanism for placing
data into the target signal is TRANSPORT. This mechanism allows
new data scheduled for this signal to be appended to the existing
data.
 The inner loop in the statement part of consecutive_data proce-
dure adds a 1 to data each time it is executed. Looping is done for all
bits of data starting from its right most bit. If the actual parameter of
this procedure that is associated with target is an m-bit vector de-
clared from m-1 to 0, then target and data will take the same range.
In this case, ‘REVERSE_RANGE of data becomes 0 to m-1. The inner
loop of consecutive_data adds a 1 to data. Adding and retaining carry
begins from the least significant bit of data. Addition is done this way
because VHDL does not define the add operation for objects of the
BIT_VECTOR type. Various libraries and packages exist that facili-
tate arithmetic and logical operations for several standard types. Li-
braries and packages are discussed in the next section, and details of
some of the standard packages are included in this book as appendi-
ces.
 Three instances of calling the consecutive_data procedure of
Figure 5.16 are shown in Figure 5.17. The architecture shown applies
consecutive data to a, b and s inputs of multiplexer8. The multi-
plexer8 entity was presented in Chapter 3. This is an octal 2-to-1 mul-
tiplexer. The data inputs of this circuit are 8-bit a and b vectors, and
its select input is s. In the testbench, data on a, b, and s are distanced
in time by 123 ns, 79 ns and 119 ns, respectively. Since consecu-
tive_data requires a BIT_VECTOR to be associated with target, and s
is a scalar, we have used the one bit long sel of BIT_VECTOR type to
associate with target.
 Procedures may be called from concurrent or sequential VHDL
bodies. A sequential procedure call is executed when the program
flow reaches it. On the other hand a concurrent procedure call, like
those of Figure 5.17 is executed once at the very beginning of simula-
tion and after that when an event occurs on one of its input signals.
Since consecutive_data does not have any input signal, its invocations
in Figure 5.17 are only executed at the beginning of simulation after
the initialization phase.

Sequential Constructs for RT Level Descriptions 139

ARCHITECTURE procedural OF multiplexer8_tester IS

 PROCEDURE consecutive_data
 (SIGNAL target : OUT BIT_VECTOR;
 CONSTANT ti : TIME; CONSTANT n : INTEGER)
 IS
 .
 .
 .
 END PROCEDURE consecutive_data;
 SIGNAL a, b, w2 : BIT_VECTOR (7 DOWNTO 0);
 SIGNAL s : BIT;
 SIGNAL sel : BIT_VECTOR (0 TO 0);
BEGIN
 UUT2: ENTITY WORK.multiplexer8 (direct)
 PORT MAP (a, b, s, w2);

consecutive_data (a, 123 NS, 6);
consecutive_data (b, 79 NS, 6);
consecutive_data (sel, 119 NS, 8);

 s <= sel(0);
END ARCHITECTURE procedural;

Figure 5.17 Concurrent Procedure Calls

 As another example of a procedure, consider the onehot_data
procedure of Figure 5.18. This procedure is similar to consecu-
tive_data except that is places a walking-1 on its target output. one-
hot_data uses a while-loop instead of the for-loop of Figure 5.16. The
ROR operation rotates contents of data one places to the right with
each iteration of the while-loop.

PROCEDURE onehot_data
 (SIGNAL target : OUT BIT_VECTOR;
 CONSTANT ti : TIME; CONSTANT n : INTEGER)
IS
 VARIABLE data : BIT_VECTOR (target'RANGE);
 VARIABLE i : INTEGER := 0;
BEGIN
 data (0) := '1';
 WHILE i < n LOOP
 data := data ROR 1;
 target <= TRANSPORT data AFTER ti * i;
 i := i + 1;
 END LOOP;
END PROCEDURE onehot_data;

Figure 5.18 Using While Loop

140 Chapter 5

5.3.3 Language Aspects of Subprograms
The general structure of subprograms was discussed in relation to the
mux function in Figure 5.13. The consecutive_data procedure is a lar-
ger example, and it contains other language features of subprograms.
As shown in Figure 5.19, the procedure begins with a subprogram
specification. This part specifies the formal parameter list, which is
syntactically similar to an interface list. The first parameter in this
list indicates that target is a BIT_VECTOR signal with OUT mode
which can only be written into. The mode of the next two parameters
is IN, and they are constants of TIME and INTEGER types, respec-
tively. If the class of an object, for example, SIGNAL or CONSTANT,
for the parameters of a procedure is not specified, CONSTANT is as-
sumed for the IN mode parameters and VARIABLE is assumed for
the OUT mode parameters.

Figure 5.19 Details of a Subprogram Body

In the subprogram declaration in Figure 5.19, a BIT_VECTOR
type variable and two BIT types are declared. Variables are initial-
ized to their initial values each time a subprogram is called. If initial
values are not specified, default initial values, which depend on the
type of an object, are used. In this case data is initialized to all 0’s,
and sum and carry are initialized to the ‘0’ default. The body of the
consecutive_data subprogram consists of a single loop statement. De-
tails of this statement are discussed later in this chapter.

5.3.4 Nesting Subprograms
Functions and procedures are sequential bodies that can be used as
utilities for testbench and hardware development, or for description

Sequential Constructs for RT Level Descriptions 141

of hardware units. These subprograms can be invoked from concur-
rent or sequential bodies of VHDL. Being themselves sequential bod-
ies, subprograms can be invoked from other subprograms. This sec-
tion shows several examples of subprograms invoking other subpro-
grams.
 The mux function discussed before (Figure 5.13) has a part that
converts its sel input to integer. A better design is to separate this
conversion part into an integer conversion function and use this func-
tion in mux. Figure 5.20 shows an int function and its utilization in
our new version of mux. With this scheme, int becomes a function for
converting any BIT_VECTOR type to integer, and can be used in con-
current or sequential bodies. The mux function in Figure 5.20 uses int
to index databits to select the bit of this vector that is addressed by
sel. In order to make it a general purpose function, int uses the
‘LENGTH attribute to read the size of its input BIT_VECTOR.

FUNCTION int (invec : BIT_VECTOR) RETURN INTEGER IS
 VARIABLE tmp : INTEGER := 0;
BEGIN
 FOR i IN invec'LENGTH - 1 DOWNTO 0 LOOP
 IF invec (i) = '1' THEN
 tmp := tmp + 2**i;
 END IF;
 END LOOP;
 RETURN tmp;
END FUNCTION int;

FUNCTION mux (databits : BIT_VECTOR; sel : BIT_VECTOR)
RETURN BIT IS
BEGIN
 RETURN databits (int(sel));
END FUNCTION mux;

Figure 5.20 Using a Function in Another

 Another example of using a subprogram in another is shown in
Figure 5.21. In this code the inc procedure is used for incrementing
its invec parameter. This parameter is declared as an INOUT vari-
able in order to be used both as input and output. The inc procedure
uses a loop for sum and carry calculations in order to perform bit-by-
bit incrementing of invec. The ‘REVERSE_RANGE attributes causes
incrementing to be done starting from the least significant bit of in-
vec.
 The consecutive_data procedure shown in Figure 5.21 uses inc to
increment its data variable. Calling inc in consecutive_data is a se-
quential procedure call, whereas, invocations of consecutive_data in

142 Chapter 5

multiplexer8_tester in Figure 5.17 are considered to be concurrent
procedure calls.

PROCEDURE inc (VARIABLE invec : INOUT BIT_VECTOR) IS
 VARIABLE sum, carry : BIT;
BEGIN
 carry := '1';
 FOR j IN invec'REVERSE_RANGE LOOP
 sum := invec (j) XOR carry;
 carry := invec (j) AND carry;
 invec (j) := sum;
 END LOOP;
END PROCEDURE inc;
--
PROCEDURE consecutive_data
 (SIGNAL target : OUT BIT_VECTOR;
 CONSTANT ti : TIME; CONSTANT n : INTEGER) IS
 VARIABLE data : BIT_VECTOR (target'RANGE);
BEGIN
 FOR i IN 1 TO n LOOP
 inc (data);
 target <= TRANSPORT data AFTER ti * i;
 END LOOP;
END PROCEDURE consecutive_data;

Figure 5.21 Using a Procedure in Another

 A utility hardware function for binary decoding is shown in
Figure 5.22. This function uses the int function that was developed
for implementing mux. Variable tmp represents the output of the de-
coder. A variable assignment in the body of dcd sets all bits of tmp to
‘0’. The assignment that follows this puts a ‘1’ in the tmp location that
is addressed by the decoder’s bin input. The int function generates an
integer for indexing tmp.

FUNCTION dcd (bin : BIT_VECTOR) RETURN BIT_VECTOR IS
 VARIABLE tmp : BIT_VECTOR(0 TO 2**bin'LENGTH - 1);
BEGIN
 tmp := (OTHERS => '0');
 tmp (int(bin)) := '1';
 RETURN tmp;
END FUNCTION dcd;

Figure 5.22 Using int Function

 A 3-to-8 decoder using the dcd function of Figure 5.22 is shown
in Figure 5.23. The decoder has an enable input (en) that makes all
decoder outputs zero when it is ‘0’. This decoder can be adjusted to
any size when instantiated.

Sequential Constructs for RT Level Descriptions 143

ENTITY decoder IS
 PORT (bin_in : IN BIT_VECTOR; en : IN BIT;
 dcd_ou : OUT BIT_VECTOR);
END ENTITY decoder;
--
ARCHITECTURE functional OF decoder IS
BEGIN
 dcd_ou <= dcd (bin_in) WHEN en = '1'
 ELSE (OTHERS => '0');
END ARCHITECTURE functional;

Figure 5.23 Using dcd Function in a Concurrent Statement

5.4 VHDL Library Structure
The VHDL language uses libraries for design organization, user re-
sources, vendor specific information, and adaptation of the language
to the standards. Contents of a VHDL library are design units such
as entity-architecture pairs, configurations, and packages.

5.4.1 Creating Libraries
When a design unit is being compiled, by default it is placed in a li-
brary called WORK. This library is automatically created when a de-
sign project is defined.
 The built-in standard VHDL library is STD. STD is internal to
the language and is not available for user manipulation. VHDL has
other system libraries that are used for adapting the language to cer-
tain standards. An example is the IEEE library that includes type
and operator definition for various logic value systems, math pack-
ages and other standard utilities. System libraries are created when a
VHDL simulator is installed.
 Vendor libraries in VHDL include parts, timing files, cell librar-
ies, and vendor specific types and definitions. These libraries are cre-
ated when a certain chip manufactures is specified during installa-
tion of a VHDL simulator.
 Users can also create their own libraries. A VHDL simulation
environment provides a mechanism for creation, deletion, and ma-
nipulation of user libraries. The language has no provisions for ma-
nipulation of libraries. When a design is being compiled, the user
specifies if it is to be compiled into a certain user library or the de-
fault WORK library.

144 Chapter 5

5.4.2 Using Libraries
Except for the STD and WORK libraries, the uses of which are im-
plied, a design unit must always specify the library that is being
used. The VHDL construct for this purpose is the library construct
that uses the LIBRARY keyword followed by the library name. For
example, for a design to use utility package of the IEEE library, the
following statement that is referred to as a library clause must ap-
pear in the corresponding design file.

LIBRARY IEEE;

 VHDL has no language support for creating, deleting, moving, or
archiving libraries. Library management is generally done within a
VHDL based software environment and the related tools. A certain
software environment may use the name of a design project as the
library name, while another vendor may use command line instruc-
tions for library management. In the section that follows we show
how libraries are used. We assume two user libraries are defined.
One is the utilities library for organizing utility types and subpro-
grams, and the other is the components library for organizing com-
monly used hardware components. For accessing elements of these
libraries the following statements must be used.

LIBRARY utilities;
 LIBRARY components;

5.5 Packaging Utilities and Components
In the parts library of a hardware designer, gates or components are
grouped according to their technology, physical characteristics, cost,
or complexity or simply according to their availability. A designer
chooses a certain group of components based on specific design re-
quirements. In VHDL, packages can be used for this grouping of com-
ponents. The VHDL package constructs can also be used for packag-
ing commonly used user-defined types and subprograms.
 A VHDL package has a package declaration and a package body.
The package declaration contains the declaration of entities (types,
components, subprograms, etc.) that are to be accessible by entities
using the package. The package body has the description of subpro-
grams declared in the package declaration, and subprograms and
types that are used local to the package body.

Sequential Constructs for RT Level Descriptions 145

5.5.1 A Package of Utilities
A package for utilities such as type declarations and subprograms
requires a package declaration and a package body. An example
package declaration for a utility package is shown in Figure 5.24.
This includes declaration of int, mux, bin, dcd, inc and consecu-
tive_data subprograms. These subprograms were discussed in the
previous section. As shown, a subprogram declaration is basically the
same as a subprogram header (see corresponding codes of Section 5.3)
except that it does not contain the IS keyword. The declarations here
make these subprograms visible to the package user.

PACKAGE BasicUtilities IS
 FUNCTION int (invec : BIT_VECTOR) RETURN INTEGER;
 FUNCTION mux (databits : BIT_VECTOR;
 sel : BIT_VECTOR) RETURN BIT;
 FUNCTION bin (inint, size : INTEGER)
 RETURN BIT_VECTOR;
 FUNCTION dcd (bin : BIT_VECTOR) RETURN BIT_VECTOR;
 PROCEDURE consecutive_data
 (SIGNAL target : OUT BIT_VECTOR;
 CONSTANT ti : TIME; CONSTANT n : INTEGER);
END PACKAGE BasicUtilities;

Figure 5.24 An Example Package Declaration

 Figure 5.25 shows a package body that is associated with the
BasicUtilities package declaration of Figure 5.24. This body contains
descriptions for subprograms declared in Figure 5.24. The descrip-
tions are those of the previous section with the addition of bin that is
shown in this figure. These subprograms are all compiled at the same
time when the package is compiled. Figure 5.26 shows the syntax of a
package declaration and a package body.
 Subprograms of this package can only be accessed by design
units that makes contents of BasicUtilities visible by the use of the
use clause. Furthermore, the package itself must become visible by
the use of the LIBRARY clause for the library that the package is
compiled in. For example, suppose that our BasicUtilities is compiled
in the utilities library. For a design unit to use the subprograms of
Figure 5.24, the following statements must appear in the correspond-
ing design file:

LIBRARY utilities;
 USE utilities.BasicUtilities.All;

146 Chapter 5

PACKAGE BODY BasicUtilities IS

FUNCTION int: see Figure 4.37

FUNCTION mux: see Figure 4.31

FUNCTION bin (inint, size : INTEGER) RETURN BIT_VECTOR IS
 VARIABLE tmpi : INTEGER := inint;
 VARIABLE tmpb : BIT_VECTOR (size - 1 DOWNTO 0);
BEGIN
 tmpb := (OTHERS => '0');
 FOR i IN 0 TO size - 1 LOOP
 IF ((tmpi MOD 2) = 1) THEN
 tmpb(i) := '1';
 END IF;
 tmpi := tmpi / 2;
 END LOOP;
 RETURN tmpb;
END FUNCTION bin;

-- PROCEDURE inc: see Figure 5.21

-- PROCEDURE consecutive_data: see Figure 5.21

END PACKAGE BODY BasicUtilities;

Figure 5.25 Subprogram Definition in Package Body

Figure 5.26 Package Declaration and Body Syntax

Sequential Constructs for RT Level Descriptions 147

The first statement makes visible everything that is in the utili-
ties library, and the second statement makes all declarations of Ba-
sicUtilities visible. To avoid name conflicts and to eliminate those dec-
larations that are not being used, individual declarations that are
being used could be named instead of using the ALL keyword. For
example if we only need mux and dcd from the above package, the
following statement would provide the necessary visibility.

USE utilities.BasicUtilities.mux,
 utilities.BasicUtilities.dcd;

 In the following discussion we assume that the utilities library
has been created and BasicUtilities is compiled in this library.

5.5.2 A Package of Components
While the above discussion concentrated on the use of packages for
organizing utility functions, the discussion here focuses on use of
packages and libraries for organizing components described by entity-
architecture pairs or configuration declarations.

LIBRARY utilities;
USE utilities.BasicUtilities.ALL;

ENTITY alu4function IS
 PORT (ai, bi : IN BIT_VECTOR;
 mode : IN BIT_VECTOR (1 DOWNTO 0);
 aluout : OUT BIT_VECTOR);
END ENTITY;
--
ARCHITECTURE customizable OF alu4function IS
 CONSTANT size : INTEGER := ai'LENGTH;
BEGIN
 PROCESS (ai, bi, mode) BEGIN
 CASE BIT_VECTOR (mode) IS
 WHEN "00" =>
 aluout <= bin(int(ai) + int(bi), size);
 WHEN "01" =>
 aluout <= bin(int(ai) - int(bi), size);
 WHEN "10" =>
 aluout <= ai AND bi;
 WHEN "11" =>
 aluout <= ai OR bi;
 WHEN OTHERS =>
 aluout <= bin(0, size);
 END CASE;
 END PROCESS;
END ARCHITECTURE customizable;

Figure 5.27 A Design Unit Compiled in our GenericParts Library

148 Chapter 5

 Consider, for example, the alu4function design unit shown in
Figure 5.27. Because this design uses the bin function, the design file
includes the library and use clauses shown. This ALU is a four-
function ALU with generic size inputs and outputs. Suppose that this,
the generic dregister of Figure 5.28, and several other generic designs
discussed earlier in this chapter are compiled in a library named
components. Usually, a VHDL based tool has a compile option for
specifying the library that a design is compiled into.

LIBRARY utilities;
USE utilities.BasicUtilities.ALL;

ENTITY dregister IS
 PORT (rst, clk : IN BIT; regin : IN BIT_VECTOR;
 regout : OUT BIT_VECTOR);
END ENTITY;
--
ARCHITECTURE synchronous OF dregister IS
 CONSTANT size : INTEGER := regin'LENGTH;
BEGIN
 reg: PROCESS (clk) BEGIN
 IF (clk = '1') THEN
 IF rst = '1' THEN regout <= bin (0, size);
 ELSE regout <= regin;
 END IF;
 END IF;
 END PROCESS reg;
END ARCHITECTURE synchronous;

Figure 5.28 D-Register Compiled in GenericParts

With the compilations named above, our components library will in-
clude decoder, alu4function, multiplexer_n, ssd, and dregister. If a
VHDL description of a component is to use any of these design units,
the library clause shown below must be included in the design file. In
addition, a use clause must be used to make design units of this li-
brary visible. This is also shown below:

 LIBRARY components;
 USE components.All;

Furthermore to make proper binding to one of the components of this
library, e.g., alu4function, the following configuration specification
must be used.

FOR ALL: alu_instances
USE ENTITY components. Alu4function (customizable);

Sequential Constructs for RT Level Descriptions 149

 A design unit wanting to use all of the components of our compo-
nents library must individually declare all components. This situation
can be eased by using a package declaration to contain declarations
for these components. Figure 5.29 shows the GenericParts package
that we compile in our components library.

PACKAGE GenericParts IS
 COMPONENT dec_n PORT
 (bin_in : IN BIT_VECTOR; en : IN BIT;
 dcd_ou : OUT BIT_VECTOR);
 END COMPONENT;
 COMPONENT alu_n PORT
 (ai, bi : IN BIT_VECTOR;
 mode : IN BIT_VECTOR (1 DOWNTO 0);
 aluout : OUT BIT_VECTOR);
 END COMPONENT;
 COMPONENT mux_n PORT
 (ins : IN BIT_VECTOR;
 s : IN BIT_VECTOR; w : OUT BIT);
 END COMPONENT;
 COMPONENT ssd_f PORT
 (bcd : IN BIT_VECTOR (3 DOWNTO 0);
 display : OUT BIT_VECTOR (1 TO 7));
 END COMPONENT;
 COMPONENT dreg_n PORT
 (rst, clk : IN BIT; regin : IN BIT_VECTOR;
 regout : OUT BIT_VECTOR);
 END COMPONENT;
END PACKAGE GenericParts;

Figure 5.29 A Package of Component Declarations

This is only a package of declarations and does not require an
associated package body. For a design unit to take advantage of these
declarations, it must first use the library clause for visibility into the
library. Then, a USE clause must be used to make the declarations of
the package visible.

We will complete this section by showing a testbench for
alu4function that we compiled in our components library. This exam-
ple shows how our utilities and components libraries, as well as our
BasicUtilities and GenericParts packages are used.

The alu_n_tester entity and architecture pair is shown in Figure
5.30. This design uses the consecutive_data procedure of the BasicU-
tilities package. Because this package is compiled in the utilities li-
brary, lines 1 and 2 in this figure are needed to make this procedure
visible. Our testbench instantiates alu_n according to the declaration
of Figure 5.29. Lines 3 and 4 of Figure 5.30 make this declaration
visible. The configuration specification of Figure 5.30 binds the alu_n

150 Chapter 5

instance to the alu4function(customizable) entity-architecture pair.
This binding requires visibility to this entity-architecture pair that is
satisfied by line 3 and 5 of Figure 5.30.

LIBRARY utilities; -- Line 1
USE utilities.BasicUtilities.ALL; -- Line 2

LIBRARY components; -- Line 3
USE components.GenericParts.ALL; -- Line 4
USE components.ALL; -- Line 5

ENTITY alu_n_tester IS END ENTITY;
--
ARCHITECTURE timed OF alu_n_tester IS
 SIGNAL m : BIT_VECTOR (1 DOWNTO 0) := "00";
 SIGNAL li,ri,ao : BIT_VECTOR (7 DOWNTO 0) := "00000100";
 FOR UUT1 : alu_n USE ENTITY
 components.alu4function (customizable);
BEGIN
 UUT1: alu_n PORT MAP (li, ri, m, ao);
 consecutive_data (m, 123 NS, 13);
 consecutive_data (li, 223 NS, 9);
 consecutive_data (ri, 257 NS, 9);
END ARCHITECTURE timed;

Figure 5.30 Using Components and their Declarations

5.6 Sequential Statements
Statements used in processes, functions and procedures of this chap-
ter are regarded as sequential statements. These statements execute
when the program flow in a sequential body reaches them. Sequential
statements are useful for behavioral descriptions of components and
tasks. The syntax of sequential statements is similar to what is found
in most software languages, and because of this similarity we will
only briefly discuss their syntax here. For this discussion we use the
examples presented in the earlier parts of this chapter.

5.6.1 If Statement
The multiplexer example of Figure 5.5 uses a simple form of an if
statement. The else-part shown here may be eliminated if not needed.
However, the use of keywords IF, THEN, and END IF are required in
this statement. Figure 5.31 shows the syntax of the if statement used
in the multiplexer architecture of Figure 5.5. Since this statement
itself is a sequential statement, it can enclose another if statement
and thus if statements can be nested.

Sequential Constructs for RT Level Descriptions 151

Figure 5.31 Simple if Statement Syntax

 Figure 5.8 shows another use of an if statement. This example
uses an ELSIF that is followed by a condition, the THEN keyword,
and a sequential statement that assigns din to qout.

5.6.2 Loop Statement
VHDL allows loop statements in sequential bodies such as processes
and subprograms. A loop statement can have an iteration scheme
such as a for or while scheme, or it may be without any iteration
scheme.
 The procedure of Figure 5.16 contains a nesting of two for-loop
statements. The outer loop contains a variable assignment, a loop
statement, and a sequential signal assignment. The inner loop has
three variable assignments. Figure 5.32 shows the syntax details of
this statement. The iteration scheme used with this loop statement
causes the statements within the loop to be executed n times, while i
changes from 1 to n. The value of this identifier can be used within
the loop and need not be declared.

Figure 5.32 Loop Statement with a FOR Iteration Scheme

152 Chapter 5

 VHDL also allows loop statements without an iteration scheme.
Such a statement is an infinite loop. The only way to exit from this
loop is to use an exit statement. For example, the loop shown in Figure
5.33 terminates only when x is equal to 25. If this condition does not
occur, the looping continues indefinitely.

Long_runing : LOOP
 .
 .
 .
 IF x = 25 THEN
 EXIT;
 END IF;
 .
 .
 .
END LOOP long_runing;

Figure 5.33 Partial Code for Demonstrating Exiting from a Potentially Infinite Loop

Next and exit statements can be used within loop statements. A
next statement reached by the program flow within a loop causes the
rest of the loop to be skipped and the next iteration to be taken. An
exit statement causes the termination of the loop that it applies to.
Both statements can be used optionally with a loop label and a condi-
tion, as presented here:

NEXT loop_label WHEN condition;

The if statement of Figure 5.33 can be replaced with the exit state-
ment shown here:

EXIT WHEN x = 25;

If the optional loop label of the next or the exit statements is not in-
cluded, the next or exit statements apply to their innermost enclosing
loop. Inclusion of this label, however, enables the application of these
statements to selected outer loops. Consider the partial code in Figure
5.34.

While in loop_2, if after the execution of sequential_statemet_4
condition_1 is TRUE, the next-statement causes the remainder of
loop_2 and loop_1 loops to be skipped, and the next iteration of loop_1
is taken. Therefore, the value of i is incremented and the sequen-
tial_statement_1 is executed after the execution of the next statement.

Sequential Constructs for RT Level Descriptions 153

loop_1 : FOR i IN 5 TO 25 LOOP
 . . .
 sequential_statement_1;
 . . .
 sequential_statement_2;
 . . .
 loop_2 : WHILE j <= 90 LOOP
 . . .
 sequential_statement_3;
 sequential_statement_4;
 . . .
 NEXT loop_1 WHEN condition_1;
 . . .
 sequential_statement_5;
 sequential_statement_6;
 . . .
 END LOOP loop_2;
 . . .
END LOOP loop_1;END LOOP long_runing;

Figure 5.34 Partial Code for Demonstrating Conditional Next Statements in a Loop

5.6.3 Case Statement
Another sequential flow control statement of VHDL is the case state-
ment. This statement was used in the alu4function example of Figure
5.27. This statement has an optional case label followed by a colon
that is not used in this example. The statement shown begins with
the CASE keyword, followed by a case expression, and then several
case statement alternatives follow. When all alternatives are listed,
END CASE keywords and a semicolon end this statement.

Figure 5.35 shows the syntax of the case statement used in the
alu4function example. As shown, the case expression is mode that is
casted with BIT_VECTOR for its type to match the various choices
that follow. There are five case statement alternatives here that begin
with the WHEN keyword. Each alternative has a choice (or choices)
followed by a right arrow and followed by sequence of statements.
 The last case statement alternative uses OTHERS for its choice.
Use of OTHERS is only mandatory if the preceding choices have not
covered all cases of the case expression. Obviously, since in our exam-
ple mode is a two-bit vector and we have covered all its choices, use of
OTHERS is not necessary.
 If the same group of statements need to execute for several
choices, the choices can be ored together with vertical bar (|) charac-
ters. An example is shown below:

WHEN choice1 | choice2 => statement1; statement2;

154 Chapter 5

Figure 5.35 Syntax Details of Case Statement

5.6.4 Assertion Statement
The assertion statement is a useful statement for observing activity in
a circuit or defining constraints or conditions in the way a circuit op-
erates. The general format of this statement is:

ASSERT assertion_condition
REPORT "reporting_message" SEVERITY severity_level;

The statement is said to “occur” when the Boolean asser-
tion_condition expression becomes FALSE. At this point, the report-
ing_message is issued, and the simulator takes the action specified by
the severity_level parameter. The latter parameter can be NOTE,
WARNING, ERROR or FAILURE. The ERROR or FAILURE severity
levels causes the simulation to stop after issuing the report-
ing_message and a simulation error or failure message. The other two
severity_levels cause appropriate massages to be issued and the simu-
lation to continue. The REPORT keyword and its following report-
ing_message, as well as the SEVERITY keyword and severity_level,
are optional parts of the assertion statement. If the REPORT is not
present, only a system message is issued, and the absence of the SE-

Sequential Constructs for RT Level Descriptions 155

VERITY keyword and its accompanying severity_level defaults to the
ERROR severity level. The exact series of actions taken by different
severity level parameters is simulation-dependent.
 An assertion statement with a FALSE condition always occurs.
Such a statement is equivalent to the sequential statement shown
below:

REPORT “reporting_message” SEVERITY severity_level;

Sequential and concurrent VHDL bodies can use assertion state-
ments. A sequential assertion statement issues the reporting_message
if its assertion_condition is FALSE when the program flow reaches
the statement. Figure 5.36 shows an example illustrating this use of
the assertion statement.

ARCHITECTURE sync_timed OF dregister IS
 CONSTANT size : INTEGER := regin'LENGTH;

BEGIN
 reg: PROCESS (clk)
 VARIABLE last_edge, duration : TIME := 0 NS;
 BEGIN
 duration := NOW - last_edge;
 last_edge := NOW;
 ASSERT NOT (duration < 3 NS)
 REPORT "Clock Width Too Short"
 SEVERITY NOTE;
 IF (clk = '1') THEN
 IF rst = '1' THEN regout <= bin (0, size);
 ELSE regout <= regin;
 END IF;
 END IF;
 END PROCESS reg;
END ARCHITECTURE sync_timed;

Figure 5.36 Architecture for Dregister Using Sequential ASSERT

 As shown in this figure, sync_timed is an alternative architecture
for dregister of Figure 5.28. The reg process in this architecture uses
last_edge and duration variables to keep track of pulse widths of clk.
The duration variable is updated with every edge of the clock. After it
is updated an assert statement issues a message if the value of this
duration is less than 3 nanoseconds.
 The use of NOT with the ASSERT makes the message to corre-
spond to the condition that appears after NOT. So we can read it as: if
duration is less than 3 ns, display “clock width too short”. The follow-
ing paragraph elaborates on this.

156 Chapter 5

The expression "ASSERT condition ..." reads as "make sure that
this condition is satisfied; otherwise, ...". Therefore, it is clear that a
good case must be used as the condition of the statement. The prob-
lem arises, however, in the many situations where the good cases are
too many to list, and it is easier to write the complement of the un-
wanted case. For checking errors, then, we will always use AS-
SERT(NOT(unwanted_cases)). After canceling the two negations, this
is equivalent to ASSERT(wanted_cases). For cases in which grouping
good cases is as easy as grouping unwanted cases, this negation is not
necessary. For example, the following statement triggers when numb
becomes negative.

ASSERT numb >= 0;

For cases where violation of constraints must be continuously
checked and reported, concurrent assertion statements should be
used. These cases include checking of timing constraints such as
pulse width, setup time, and hold time. A concurrent assertion state-
ment can be placed in the statement part of an architecture or in the
statement part of an entity declaration. In either case, it is observed
at all times and it occurs when an event causes its condition to be-
come FALSE. Examples of concurrent assertions for setup and hold
time checks are presented in the next chapter.

5.7 Summary
The focus of this chapter was on description of hardware using se-
quential statements. A sequential statement offers a convenient way
of describing behavior of a hardware component. VHDL bodies for
inclusion of sequential statements are process statements and sub-
programs. Details of these constructs and various forms of their utili-
zations were discussed in this chapter. After a thorough treatment of
this subject, the chapter discussed VHDL library structures and
packages. We showed how packages can be used for inclusion of sub-
programs and component declarations.

Problems
5.1 In the testbench shown below, show waveforms applied to the
CUT inputs up to 80 NS.

ENTITY tester IS END TESTER;
--

Sequential Constructs for RT Level Descriptions 157

ARCHITECTURE data OF tester IS
 SIGNAL reset, clock : BIT := '1';
 SIGNAL xx : BIT_VECTOR (3 DOWNTO 0) := "1101";
 SIGNAL z : BIT;
BEGIN
 CUT : CircuitUnderTest PORT MAP(xx, reset, clock, z);
 PROCESS BEGIN
 reset <= '1';
 WAIT FOR 26 NS;
 reset <= '0';
 WAIT FOR 4 NS;
 WAIT;
 END PROCESS;
 --
 clock <=NOT clock AFTER 5 NS WHEN NOW <= 70 NS ELSE '0';
 --
 PROCESS BEGIN
 WAIT UNTIL clock = '1';
 WAIT FOR 3 NS;
 xx <= xx(0) & xx(3 DOWNTO 1);
 END PROCESS;
END ARCHITECTURE;

5.2 Show the result of the following code for 120 NS.

ENTITY top IS END ENTITY;
--
ARCHITECTURE tester OF top IS
 SIGNAL a, b, c : INTEGER;
BEGIN
 PROCESS
 VARIABLE vc : INTEGER := 0;
 BEGIN
 vc := a * 2 * b + 11;
 WAIT FOR 55 NS;
 WAIT;
 END PROCESS;
 PROCESS BEGIN
 WAIT FOR 20 NS;
 a <= (a + 2) MOD 4;
 END PROCESS;

 PROCESS BEGIN
 b <= 1;
 WAIT FOR 40 NS; b <= 5;
 WAIT FOR 40 NS; b <= 7;
 WAIT FOR 40 NS; b <= 11;
 WAIT;
 END PROCESS;

158 Chapter 5

 PROCESS (a)
 VARIABLE vc : INTEGER := 5;
 BEGIN
 vc := a * 2 * b;
 c <= vc + 1;
 END PROCESS;
 PROCESS (a, b, c) BEGIN
 ASSERT FALSE
 REPORT "At: " & TIME'IMAGE(NOW) &
 " a= " & INTEGER'IMAGE(a) &
 " b= " & INTEGER'IMAGE(b) &
 " c= " & INTEGER'IMAGE(c) SEVERITY NOTE;
 END PROCESS;

END ARCHITECTURE;

5.3 Given the following description show the waveforms on out1 and
out2 outputs. The problem involves signals, sensitivity list, variable
initialization, variable assignments, and scheduling.

ENTITY signals IS
 PORT (ain, bin, cin : IN BIT; out1, out2 : OUT BIT);
END signals;

--
ARCHITECTURE nothing OF signals IS
 SIGNAL cx : BIT;
BEGIN
 PROCESS
 VARIABLE cv : BIT := '0';
 BEGIN
 CASE BIT_VECTOR'(ain, bin, cin) IS
 WHEN "001" =>
 cx <= NOT ain AFTER 10 NS;
 cv := cx;
 WHEN "010" =>
 cx <= NOT bin AFTER 10 NS;
 cv := cx;
 WHEN "100" =>
 cx <= NOT cin AFTER 10 NS;
 cv := cx;
 WHEN "101" =>
 cx <= cv AFTER 15 NS;
 WHEN "110" =>
 cx <= cin AFTER 10 NS;
 WHEN OTHERS => NULL;
 END CASE;
 out1 <= cv;
 out2 <= cx;
 WAIT ON ain, bin, cx;
 END PROCESS;
END nothing;

Sequential Constructs for RT Level Descriptions 159

5.4 Write a function for the carry output of a full-adder. Write a
function for the sum output of a full-adder.

5.5 Write a function, inc_bits, that returns the 4-bit increment of its
4-bit input vector. Write Boolean expressions for the four bits of the
output.

5.6 Write a procedure, apply_bit, such that bits of a 24 bit wide
string input to the procedure are applied to its target signal according
to the specified time interval. Make sure no unnecessary transactions
occur on the target of the procedure. A sample call to this procedure is
shown here.

apply_bit (target, "110001000100001111001010", 300 NS);

5.7 Write an unconstrained odd parity checker function. The input
is of std_logic_vector type and the output of std_logic type. Treat val-
ues ‘Z’ and ‘X’ as ‘1’. The function returns the XOR results of all its
input bits.

5.8 Write a procedure that assigns consecutive binary numbers to
its output BIT_VECTOR lines. The parameters of the procedure are
an 8-bit target output and a time period. When called, it will assign
sequential binary numbers from 0 to 255 to its target signal output.
These numbers are distanced by the amount of the constant associ-
ated with the period parameter.

5.9 Write a procedure, apply_bit, such that bits of an unconstrained
string input to the procedure are applied to its target signal according
to the specified time interval. Make sure no unnecessary transactions
occur on the target of the procedure. A sample call to this procedure is
shown here:

apply_bit (target, "110001000100001111001010", 300 NS);

5.10 Write a procedure that issues a warning message if a positive
pulse on its go output appears any sooner than 200 NS than a com-
plete positive pulse on its ready input. Use assertion statements for
issuing the error. The only acceptable case is go to appear at least 200
ns after ready. Any other case and any overlapping of positive pulses
must be reported as a violation. This procedure is to be called from a
concurrent body of VHDL. Use the standard std_logic type.

160 Chapter 5

5.11 A signal is to be passed to a procedure. The procedure is to
count all transactions that have occurred on the signal from time 0 to
the time of calling of the procedure. The procedure returns this inte-
ger count via its second argument. Write the procedure using sig for
input signal and cnt for output transaction count. The procedure may
be called from a sequential body such as a process statement.

5.12 Write an assertion statement to issue a warning message if a
negative pulse shorter than 1 us appears on the input clock.

5.13 Write an assertion statement to issue a warning message if the
frequency of the observing clock is lower than 100 KHz. If the clock is
too slow in some MOS circuit, the circuit loses information. Assume
50% duty cycle.

5.14 Show VHDL code for a 4-bit counter that counts the following
sequence: 0100, 0001, 1011, 1010, 0110, 1111, 0111, 0000, 1000. Af-
ter a clock pulse, a present count of 0001 results in the next count of
1011, and a present count of 1000 results in the next count of 0100
(roll over). Code this circuit by a memory, mem, that is initialized by
reading a text file that contains the count sequence. You should read
the contents of mem.dat file and load it into mem. Show the complete
VHDL code including necessary declarations and contents of the
memory file.

Suggested Reading
Baker, Louis, VHDL Programming: With Advanced Topics, 1992,

Wiley Professional Computing, John Wiley & Sons Inc, ISBN: 978-
0792390305.

Bhasker, Jayaram, A VHDL Primer, 3rd edition, 1998, Prentice Hall
PTR, ISBN: 978-0130965752.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference
Manual, SH94983-TBR (print) SS94983-TBR (electronic), ISBN 0-
7381-3247-0 (print) 0-7381-3248-9 (electronic), 2002.

IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer
Level (RTL) Synthesis, SH95242 (print) SS95242 (electronic),
ISBN 0-7381-4064-3 (print) 0-7381-4065-1 (electronic), 2004.

Lipsett, Roger, and Cary Ussery, VHDL hardware description and
Design, 1st edition, 2001, Springer, ISBN: 978-0792390305.

Perry, Douglas L., VHDL: Programming By Example, 4th edition,
2002, McGraw-Hill Professional, ISBN: 978-0071400701.

161

6VHDL Language Utilities and
Packages

The previous chapters discussed VHDL language constructs for struc-
ture and RT level descriptions. We discussed major concurrent and
sequential bodies of VHDL. Many of the language issues like types,
operators, and attributes were used in the discussions of the previous
chapters, but we never discussed their language details and their
variations. This chapter focuses of language utilities. We discuss
types, operators, type and operator related utilities, and attributes.
VHDL attributes perform certain functions on types, entities and ob-
jects of VHDL.

6.1 Type Declarations and Usage
VHDL is a strongly typed language. Type declarations must be used
for definition of objects and their types. Operations in VHDL are de-
fined for specific types of operands. The STANDARD package in the
STD library defines basic types such as BIT or INTEGER; other types
also can be defined. Basic operators also can be defined to perform
operations on operands of these new types. The general classes of
types we will discuss in this chapter include the scalar, physical com-
posite, and file types.

6.1.1 Enumeration Type for Multi-Value Logic
The basic scalar type is enumeration. This is defined as a set of all
possible values that such a type can have. The BIT type of the

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

162 Chapter 6

STANDARD package is an enumeration of ‘0’ and ‘1’, and the BOO-
LEAN type of this package is an enumeration of FALSE and TRUE.
CHARACTER, also in this package, is defined as the set of 256 ex-
tended ASCII characters. Other enumeration types can be defined by
the use of the type declaration construct.
 The VHDL standard logic (std_logic_1164) package defines the
std_logic type that takes any of the nine values, ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’,
‘L’, ‘H’, and ‘-’. These values stand for undefined, unknown, pulled
low, pulled high, float, weak unknown, weak low, weak high, and
don’t care. The std_logic_1164 package uses the following for declar-
ing this type.

TYPE std_logic IS(‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’);

This type has nine enumeration elements. The position of the
left-most element is 0 and other enumeration elements are numbered
accordingly. The left-most element is the default value of an object
that is declared of this type.
 For illustrations of this chapter we use a four-value type that is
compatible with the logic value system of the Verilog hardware de-
scription language. The type mark we use for this type is v4l that is
for Verilog 4-value logic. The Verilog language uses a four-value sys-
tem that consists of ‘X’, ‘0’, ‘1’, and ‘Z’. In most cases, ‘X’ is considered
the default value. Based on this, we defined our v4l as shown below.

 TYPE v4l IS (‘X’,’0’,’1’,’Z’);

When this type is declared in the declarative part of an architec-
ture, or if it is made visible to a design by use of a package, v4l can be
used to declare objects that can assume any of the four values, ‘X’, ‘0’,
‘1’, or ‘Z’. We assume the VerilogLogic package exists and it is com-
piled in the utilities library. This package includes the declaration of
v4l type and other related utilities that we will discuss in this chap-
ter.

Figure 6.1 shows syntax details of the above type declaration.
Enclosed in parentheses are four enumeration elements that are
separated by commas. This forms the enumeration type definition
which, together with the TYPE keyword, the v4l identifier, and the IS
keyword, forms a type declaration for declaring v4l.

Instead of using single characters enclosed in quotes, enumera-
tion elements can be identifiers formed by a string of characters. For
example, individual mnemonics of a processor can be used as enu-
meration elements to declare an instruction set in a computing ma-
chine.

VHDL Language Utilities and Packages 163

Figure 6.1 Syntax Details of a Type Declaration

6.1.1.1 Modeling a four-value Inverter. In the v4l four-value logic
system, ‘0’ and ‘1’ are for low and high logic values, respectively. The
‘Z’ value is for the high impedance or open, and the ‘X’ value is un-
known or conflict. Input-to-output mapping of an inverter in this
value system is shown in Figure 6.2.

Figure 6.2 Input-Output Mapping of an Inverter in v4l Logic Value System

As shown in the figure, inverting an unknown or high impedance
input (‘X’ or ‘Z’) results in an unknown. Figure 6.3 shows the entity
declaration and the architecture body of an inverter that uses this
logic value system.

164 Chapter 6

LIBRARY utilities;
USE utilities.VerilogLogic.ALL;

ENTITY vlog_inv IS
 GENERIC (tplh, tphl : TIME := 0 NS);
 PORT (w : OUT v4l; a : IN v4l);
END ENTITY vlog_inv;
--
ARCHITECTURE conditional OF vlog_inv IS
BEGIN
 w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE
 ‘0’ AFTER tphl WHEN a = ‘1’ ELSE
 ‘X’ AFTER tplh;
END ARCHITECTURE conditional;

Figure 6.3 VHDL Description of an Inverter in v4l Logic Value System

The v4l type is made visible to the description in Figure 6.3 when
we specify the use of the package that contains it. This visibility en-
ables us to use v4l for the type of the ports on the v4l entity. The ar-
chitectural description in Figure 6.3 uses a conditional signal assign-
ment statement to implement the table in Figure 6.2.

In this and other codes that we use v4l, we try to follow Verilog
rules as closely as possible. In Verilog, the output of a primitive gate
comes first in the list of ports. Thus we have listed w first. Also, since
in Verilog default delays are 0, we have used 0 ns for our tplh and
tphl generics.

6.1.1.2 Modeling a four-value NAND Gate. A two-input NAND
gate in the v4l logic value system can be modeled according to the
input-output mapping shown in Figure 6.4.

Figure 6.4 Input-Output Mapping of a NAND Gate in v4l Logic Value System

VHDL Language Utilities and Packages 165

Figure 6.5 shows the VHDL description for an interface and an
architecture of a vlog_nand2 entity. The input and output ports of
this entity are of the v4l type, whose declaration is included in the
VerilogLogic package. A conditional signal assignment in the state-
ment part of the conditional architecture of the vlog_nand2 entity is
used for implementing the table in Figure 6.4.

LIBRARY utilities;
USE utilities.VerilogLogic.ALL;

ENTITY vlog_nand2 IS
 GENERIC (tplh, tphl : TIME := 0 NS);
 PORT (w : OUT v4l; a, b : IN v4l);
END ENTITY vlog_nand2;
--
ARCHITECTURE conditional OF vlog_nand2 IS
BEGIN
 w <= ‘1’ AFTER tplh WHEN (a=‘1’) NAND (b=‘1’) ELSE
 ‘0’ AFTER tphl WHEN (a=‘1’) AND (b=‘1’) ELSE
 ‘X’ AFTER tplh;
END ARCHITECTURE conditional;

Figure 6.5 VHDL Description of a NAND Gate in v4l Logic Value System

6.1.1.3 Initial Values of Enumeration Types. With declaration of
objects, an initial value can optionally be specified using the initial
value expression that follows the := symbol. If this symbol and its fol-
lowing expression are not present in the declaration of an object, a
default initial value that depends on the type of the object is used.
For the enumeration types, this value is the left-most enumeration
element. For the gates in Figure 6.3 and 6.5, which is the left-most
element of the v4l type, is the initial value for all the input and out-
put ports. Had we used the ‘Z’, ‘0’, ‘1’, ‘X’ ordering for the definition of
the v4l type, default initial values of all the objects of this type would
have been ‘Z’.

6.1.2 Using Real Numbers
Besides the enumeration type, other types of the scalar classes are
the INTEGER and REAL types. Both of these types are defined in the
STANDARD package. The exact range of these types is implementa-
tion dependent, but they generally range from a small negative num-
ber to a large positive number depending on the word size of the host
machine. For the INTEGER type, these numbers are restricted to in-
tegers.

We use a load-dependent model of a CMOS inverter in order to
demonstrate the use of REAL and INTEGER numbers and their rela-

166 Chapter 6

tionship to each other. The inverter contains its own pull-up and pull-
down resistance values and adjusts its delays according to the load
capacitance at its output node. This capacitance value is passed to the
inverter model by use of the generic parameters.
 The VHDL model of a CMOS NOT gate is shown in Figure 6.6.
The cmos_not entity contains a generic formal parameter of REAL
type. The entity declaration part of this figure specifies the rpu and
rpd constants and their values. Declaring these constants in the en-
tity declaration causes them to be visible to all architectures that are
written for this entity.

LIBRARY utilities;
USE utilities.VerilogLogic.ALL;

ENTITY cmos_not IS
 GENERIC (c_load : REAL := 0.066E-12); --Farads
 PORT (w : OUT v4l; a : IN v4l);
 CONSTANT rpu : REAL := 3000.0; --Ohms
 CONSTANT rpd : REAL := 2100.0; --Ohms
END ENTITY cmos_not;
--
ARCHITECTURE rc_timed OF cmos_not IS
 CONSTANT tplh : TIME :=
 INTEGER (rpu * c_load *1.0E15) * 3 FS;
 CONSTANT tphl :
 TIME := INTEGER (rpd * c_load *1.0E15) * 3 FS;
BEGIN
 w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE
 ‘0’ AFTER tphl WHEN a = ‘1’ ELSE
 ‘X’ AFTER tplh;
END ARCHITECTURE rc_timed;

Figure 6.6 An Inverter Model with RC Timing Parameters

The declarative part of the rc_timed architecture in Figure 6.6
defines the tplh and tphl constants in terms of the pull-up or the pull-
down resistances and the load capacitance. The constructs used for
these declarations are constant declarations that contain expressions
for their values. Since all the generics and constants are defined at
the initialization time, expressions based on these parameters can be
used for the initial values of objects or for the values of other con-
stants.

6.1.3 Type Conversions
The discussion in the following paragraphs refers to the cmos_not ex-
ample of Figure 6.6 and focuses on type conversions. We show now

VHDL Language Utilities and Packages 167

REAL, INTEGER, and physical type TIME are mixed and how con-
versions from one to the other are done.

Because of the types of the tplh and tphl in figure, the result of
the evaluation of their constant value expressions must be of type
TIME. A constant of type TIME can be formed by multiplying an in-
teger number by a valid unit of this type. Since the resistance and
capacitance values are of the REAL type, their multiplication result is
a floating point number. A floating-point number must be converted
to an integer and it must be given a unit of TIME in order to be used
for an object of type TIME. For this reason, in the constant value ex-
pressions of the rc_timed architecture of cmos_not, we have used ex-
plicit REAL to INTEGER type conversion and have multiplied the
resulting integer by an appropriate time unit. Explicit type conver-
sions, such as those demonstrated here, can be done for closely re-
lated types.

Consider the constant expression for the tplh constant. This ex-
pression converts the multiplication of rpu and c_load to an integer
by use of the explicit type conversion. Before this type conversion
takes place, however, the RC product is multiplied by a factor of
1E15. This is done because normal pull resistance and load capaci-
tance multiplications result in small fractions, and converting these
small floating point numbers to the INTEGER type results in zero.
The 1E15 factor is compensated for by using the femtosecond (FS =
1E-15 sec) time unit for the overall expression. Multiplication by a fac-
tor of 3 is also included in the constant expression of the tplh con-
stant. This factor is used to account for the exponentiality of the
waveforms. We are approximating the delay values that are based on
exponential waveforms by linear RC equations. An exponential func-
tion takes about 3*RC to complete its transition from one value to
another.

6.1.4 Physical Types
Physical types in VHDL are another type in the scalar class. Values
of a physical type are used with units defined in the type definition.
Type TIME is a physical type that is defined in the STANDARD
package, and it is used for measuring time. The units of this type
have been defined as FS, PS, NS, US, MS, SEC, MIN, and HR. Other
physical types for measuring other quantities such as distance, tem-
perature, resistance, and capacitance can also be defined.

Figure 6.7 shows the definition of capacitance as a type for rep-
resenting capacitance. This definition consists of the name of the
physical type, a rang constraint, a base unit declaration (declaration
of ffr), and several secondary unit declarations (declarations of pfr to
far). The units for this type range from ffr (femtofarads) to far (far-

168 Chapter 6

ads). The base unit is ffr, and all other units are defined in terms of
this unit. Other units can be added to this type, provided they are
multiples of the base unit. Only integer numbers can be used for the
bounds of the range constraint of a physical type. Since we have
specified 0 to INTEGER’HIGH for the range constraint, negative ca-
pacitance values cannot be assigned to an object of type capacitance,
although larger values of this type may be used in expressions. An-
other example of a physical type definition is that of resistance, as
shown in Figure 6.8. As defined by this type, an object of type resis-
tance can have units ranging from l_o (milliohms = 10-3) to g_o (gi-
gaohms = 109).

TYPE capacitance IS RANGE 0 TO INTEGER’HIGH
 UNITS
 ffr; -- Femto Farads (base unit)
 pfr = 1000 ffr;
 nfr = 1000 pfr;
 ufr = 1000 nfr;
 mfr = 1000 ufr;
 far = 1000 mfr;
 END UNITS;

Figure 6.7 Type Definition for Defining the Capacitance Physical Type

To illustrate the use of the capacitance and the resistance physi-
cal types, we show them in an alternative description for the inv_rc
inverter. (The definitions for these types are assumed to be included
in the BasicUtilities package; if they are included, the definitions are
available to designs that have a use clause specifying application of
the BasicUtilities package.)

TYPE resistance IS RANGE 0 TO INTEGER’HIGH
 UNITS
 l_o; -- Milli-Ohms (base unit)
 ohms = 1000 l_o;
 k_o = 1000 ohms;
 m_o = 1000 k_o;
 g_o = 1000 m_o;
 END UNITS;

Figure 6.8 Type Definition for Defining the Resistance Physical Type

Figure 6.9 shows an entity declaration and a partial architec-
tural description for the cmos_not that takes advantage of the resis-
tance and the capacitance physical types. Except for the types of the
generics and the constants, this description is the same as that in
Figure 6.6. The cmos_not entity declaration in Figure 6.9 has a ge-

VHDL Language Utilities and Packages 169

neric parameter of type capacitance. This declaration also defines the
pull-up and pull-down resistances in terms of the resistance type.

LIBRARY utilities;
USE utilities.VerilogLogic.ALL;
USE utilities.BasicUtilities.ALL;

ENTITY cmos_not IS
 GENERIC (c_load : capacitance := 66 ffr);
 PORT (w : OUT v4l; a : IN v4l);
 CONSTANT rpu : resistance := 3 k_o;
 CONSTANT rpd : resistance := 2.1 k_o;
END ENTITY cmos_not;
--
ARCHITECTURE rc_timed OF cmos_not IS
 CONSTANT tplh : TIME :=
 (rpu / 1 l_o) * (c_load / 1 ffr) * 3 FS / 1000;
 CONSTANT tphl : TIME :=
 (rpd / 1 l_o) * (c_load / 1 ffr) * 3 FS / 1000;
BEGIN
 w <= ‘1’ AFTER tplh WHEN a = ‘0’ ELSE
 ‘0’ AFTER tphl WHEN a = ‘1’ ELSE
 ‘X’ AFTER tplh;
END ARCHITECTURE rc_timed;

Figure 6.9 Using Resistance and Capacitance Physical Types

The rc_timed architecture of the cmos_not uses two constant dec-
larations for declaring propagation delay parameters and assigning
constant values to them. The expression evaluating the constant
value for tplh uses rpu and c_load to evaluate the low-to-high propa-
gation delay. In the first set of parentheses in the constant expression
of this parameter, the rpu parameters are divided by the base unit for
the resistance physical type. This results in an integer representing
the value of rpu in terms of l_o (10-3). Similarly, in the second set of
parentheses, c_load is divided by the capacitance base unit. This con-
verts any capacitance value that is associated with the c_load generic
parameter to an integer representing the amount of the capacitance
in ffr (10-15 F). Multiplying these two sets of parentheses results in an
integer RC value which is scaled up by a factor of 1018. Using FS (10-

15 s) and dividing the tplh constant expression by 1000 compensates
for the use of l_o and the ffr units. As shown in the description in
Figure 6.9, a factor of 3 is used in order to account for the exponen-
tiality of the waveforms. The constant expression for the tphl delay
parameter is similar to that of the tplh. Dividing a physical type by
one of its units removes the type from it and converts it to an integer.
For best precision, the base unit should be used. Had we divided rpu
by k_o instead of l_o, rpu values would have been rounded off to the
smallest k_o values.

170 Chapter 6

The VHDL multiplication operator is defined for multiplying in-
teger and floating point numbers. It is also valid to multiply an inte-
ger or a floating-point number by a physical type. Multiplication of
two physical types, however, is not defined for the standard multipli-
cation operator. Dividing the resistance and capacitance physical
types by their base units enabled the use of the standard multiplica-
tion operator in the timing equations in Figure 6.9.

6.1.5 Array Declarations
The VHDL language includes constructs that can be used to declare
multidimensional array types; these array types can then be used to
declare objects. Array elements must all be of the same type. Arrays
can be indexed with the normal integer indexing or indexed using the
elements of an enumeration type. Arrays can be unconstrained,
meaning that their range can be left unspecified.

A VHDL array type declaration begins with the keyword TYPE.
The declaration specifies the name of the type that is being declared,
the range of the array, and the type of each element in the array.
Figure 6.10 shows the declarations of v4l_byte, v4l_word, v4l_4by8,
v4l_1kbyte, and v4l_8cube. The elements of v4l_byte, v4l_word,
v4l_4by8, and v4l_8cube are of the previously defined v4l type, and
the type of the eight elements of v4l_1kbyte is v4l_byte defined in the
first line of the figure.

TYPE v4l_byte IS ARRAY (7 DOWNTO 0) of v4l;
TYPE v4l_word IS ARRAY (15 DOWNTO 0) of v4l;
TYPE v4l_4by8 IS ARRAY (3 DOWNTO 0, 0 TO 7) of v4l;
TYPE v4l_1kbyte IS ARRAY (0 to 1023) OF v4l_byte;
TYPE v4l_8cube IS ARRAY (0 TO 7, 0 TO 7, 0 TO 7) of v4l;

Figure 6.10 Declaring Array Types

Once types declared in Figure 6.10 become visible to a design,
they can be used to declare objects. For example, an 8-bit v4l signal
should be declared as:

SIGNAL s_byte : v4l_byte
 := "ZZZZZZZZ";

The initial values of the eight lines of s_byte signal are all ‘Z’. For
the individual bits of s_byte, the ‘Z’ value overrides ‘X’, which is the
default initial value for the v4l type. Recall that the left-most element
is the default initial value in an enumeration type, which was ‘X’ in
the declaration of v4l.

VHDL Language Utilities and Packages 171

Other forms of array value assignments or initial values, particu-
larly useful for larger arrays, are also allowed in VHDL. An alterna-
tive to the above initialization of s_byte bits to ‘Z’ is using what is re-
ferred to as an array aggregate, which will be discussed in detail in
the next section. In using this option, signal s_byte can be declared
and initialized as:

SIGNAL s_byte : v4l_byte
 := (‘Z’,’Z’,’Z’,’Z’,’1’,’1’,’1’,’1’);

This statement initializes bits 7 down to 4 of s_byte to ‘Z’ and bits
3 down to 0 of this signal to ‘1’. This initialization uses an array ag-
gregate with positional association, meaning that each value is asso-
ciated with the array element in its corresponding position.

Assigning or initializing signals can also be done with named as-
sociation. For example, array index 5 can be assigned value ‘Z’ if an
array aggregate contains 5 => ‘Z’. The keyword OTHERS can be used
in array aggregate named association to refer to all indexes for which
a value is not specified prior to the appearance of OTHERS. In the
following declaration,

SIGNAL s_byte : v4l_byte
 := (5 => ‘Z’, OTHERS => ‘1’);

s_byte(5) is given the initial value of ‘Z’ and all other bits of s_byte are
initialized to ‘1’. A range is also allowed in a named association. In
this case, a range specification groups contiguous indexes of array
elements that are to receive the same value. As shown below, bit 1
and 0 of s_byte are initialized to ‘Z’, and all other bits are given a ‘1’
value.

SIGNAL s_byte : v4l_byte
 := (1 DOWNTO 0 => ‘Z’, OTHERS => ‘1’);

Shown below is another example of array initialization. This
statement initializes bits 1 and 0 of s_byte to ‘Z’, bits 3 and 4 to ‘X’,
and all other bits (2, 5, 6, and 7) to ‘1’. This example indicates that the
index range can be in any direction as long as it covers valid array
indexes. Even though, v4l_byte is declared with a descending range
(Figure 6.10), specifying array element values in an array aggregate
with an ascending range (3 to 4) is allowed.

SIGNAL s_byte : v4l_byte
 := (1 DOWNTO 0 => ‘Z’,
 3 TO 4 => ‘X’,
 OTHERS => ‘1’);

172 Chapter 6

Figure 6.11 shows the syntax details of the type declaration used
to define the v4l_byte type in Figure 6.10. This declaration specifies
the range of the arrays and the type of its elements. The range de-
fines the upper and the lower bounds of the array. The DOWNTO de-
scending range specification causes the left-most bit and right-most
bits of an object of type v4l_byte to have indices of 7 and 0, respec-
tively.

Figure 6.11 Syntax Details of an Array Type Declaration

Figure 6.10 also shows the declaration of a two-dimensional ar-
ray type, namely v4l_4by8. This declaration uses two range specifica-
tions separated by commas. The first is a descending range and the
second is an ascending range. The index (3, 0) references the upper
left bit of an object of type v4l_4by8.

Referencing an element or groups of elements in an array can be
achieved by indexing or by using slice specifications. To reference an
array element by indexing, an index for each of the ranges in the ar-
ray must be specified. To reference an array slice, a discrete range
should be specified. Figure 6.12 shows signal declaration and several
valid assignments to signals of the types declared in Figure 6.10. The
first declaration in Figure 6.12 declares s as a scalar of type v4l. The
next two declarations define s_byte and s_word as one-dimensional
arrays of v4l. The s4by8 array is a 4-by-8 two-dimensional array of
v4l, and the s_1kbyte signal is a one-dimensional array of size 1024,
whose elements are the v4l_byte type. The last declaration shown
here is s_8cube of type v4l_8cube. This is a three-dimensional array
whose elements are of v4l type.

VHDL Language Utilities and Packages 173

ARCHITECTURE assign OF array_test IS
 SIGNAL s : v4l;
 SIGNAL s_byte : v4l_byte;
 SIGNAL s_word : v4l_word;
 SIGNAL s_4by8 : v4l_4by8;
 SIGNAL s_1kbyte : v4l_1kbyte;
 SIGNAL s_8cube : v4l_8cube;
BEGIN
 SA1: s_byte <= v4l_byte (s_word (11 DOWNTO 4));
 SA2: s <= s_4by8 (0, 7);

 SA3: s_byte <= s_1kbyte (27);
 SA4: s <= s_1kbyte (23)(3);

 SA5: s_byte <= s_byte (0) & s_byte (7 DOWNTO 1);
 SA6: s_byte (7 DOWNTO 4) <=
 s_byte(2) & s_byte(3) & s_byte(4) & s_byte(5);

 SA7: s_byte (7 DOWNTO 4) <=
 (s_byte(2), s_byte(3), s_byte(4), s_byte(5));
 SA8: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <=
 s_byte (5 DOWNTO 2);

END ARCHITECTURE assign;

Figure 6.12 Signal Assignments Based on Signal Declarations.

The first signal assignment (statement labeled SA1) in Figure
6.12 assigns a slice of s_word to all of s_byte. The next assignment
(SA2) indexes a bit of the s_4by8 two-dimensional v4l array, and as-
signs this bit to the s signal. Multidimensional arrays such as s_4by8
can only be indexed and cannot be sliced. Therefore, it is more appro-
priate to use one-dimensional arrays of vectors such as those of
v4l_1kbyte type for declaring hardware memories.

SA3 signal assignment in Figure 6.12 assigns byte at location 27
of s_1kbyte to the left-hand-side signal s_byte.

Multi-indexing of arrays is allowed. SA4 assignment in Figure
6.12 shows bit 3 of byte at location 23 of s_1kbyte is selected and as-
signed to s. The left-hand s signal is a scalar of type v4l.

Concatenations are allowed on the right hand sides of signal as-
signments. SA5 uses indexing and slicing to form a vector to assign to
s_byte. The result is right rotate of the s_byte vector. The assignment
labeled SA6 is another right-hand-side concatenation. This assign-
ment puts bits 2, 3, 4 and 5 of s_byte into bits 7 down to 0 of this vec-
tor. Bits 2, 3, 4 and 5 had to be individually selected, because this or-
dering is ascending and s_byte is descending.

Demonstrated by SA7 and SA8 are the use of aggregate opera-
tion on the right and left of signal assignments. Unlike concatena-

174 Chapter 6

tions that are only allowed on the right hand side, the aggregate op-
eration is allowed on the right and left. An aggregate operation can
select any bit of a vector in any order. However, only elements of a
vector and not a slice of a vector can be selected. Figure 6.13 shows
what happens to bits of s_byte after assignment SA7 has taken place.
Note that SA6 results in the same assignment.

Figure 6.13 Reversing Bits of s_byte

Slicing an array with a range in the opposite direction of its de-
clared range is considered to be a constraint error. Slicing a multi-
dimensional array is not possible, but an array whose elements are
themselves arrays, such as s_1kbyte, can be indexed and then sliced.
The following selects bits 3 and 2 of byte 219 of the s_1kbyte array
signal.

s_1kbyte (219) (3 DOWNTO 2)

6.1.5.1 Initializing Multidimensional Arrays. Initial values for a one-
dimensional array type signal must be placed in a set of parentheses
and should follow the : = symbol in the signal declaration. The initial
values of individual array elements should be separated by commas.
Nested sets of parentheses should be used for multi-dimensional ar-
rays. In this case, the top level set of parentheses corresponds to the
left-most range of the array.

SIGNAL s_4by8 : v4l_4by8 :=
 (
 (‘0’, ‘0’, ‘1’, ‘1’, ‘Z’, ‘Z’, ‘X’, ‘X’),
 (‘X’, ‘X’, ‘0’, ‘0’, ‘1’, ‘1’, ‘Z’, ‘Z’),
 (‘Z’, ‘Z’, ‘X’, ‘X’, ‘0’, ‘0’, ‘1’, ‘1’),
 (‘1’, ‘1’, ‘Z’, ‘Z’, ‘X’, ‘X’, ‘0’, ‘0’)
);
SIGNAL s_4by8 : v4l_4by8 := (OTHERS => “11000000”);
SIGNAL s_4by8 : v4l_4by8 := (OTHERS => (OTHERS => ‘Z’));
SIGNAL s_4by8 : v4l_4by8
 :=(OTHERS => (0 TO 1 => ‘1’, OTHERS =>‘0’));

Figure 6.14 Initializing a Two Dimensional Array

VHDL Language Utilities and Packages 175

Figure 6.14 shows several mechanisms for the initialization of
the s_4by8 signal whose type is defined to be v4l_4by8 in Figure 6.10.
The s_4by8 array is a 4-by-8 array of v4l. In the first declaration of
Figure 6.14, the initial values are specified in a nesting of parenthe-
sized sets of values. Shown in separate rows, the deepest level of nest-
ings corresponds to the 0 TO 7 range of s_4by8. Since the left most
range of the array is 3 DOWNTO 0, four such rows are needed to ini-
tialize all the elements in the array. The second statement in this fig-
ure uses named association for specifying initial values of this array.
The keyword OTHERS covers all the left-most range of s_4by8, and
each such index is initialized with an 8-bit vector with a value of
“11000000”.

The third declaration shown in Figure 6.14 initializes all 32 bits
of s_4by8 to ‘Z’. The first OTHERS (reading from the left) covers the
left-most range of s_4by8 and the second OTHERS covers the right
most range of this signal (0 to 7). The last declaration in Figure 6.14
has the same effect as the second one. Also, since the element type of
all arrays declared here is v4l, with a default initial value of ‘X’ (that
is because ‘X’ was used as the left-most enumeration element for this
type), initializing s_4by8 to all Xs by specifying

… := (OTHERS => (OTHERS => ‘X’))

has the same effect as not specifying any initial values at all.
Although we have been emphasizing the value sets formed for

initialization of arrays, the same mechanisms can be used on the
right hand side of signal assignments. For example, in an architec-
ture body, the statement,

s_4by8 <= (3 => (OTHERS => ‘X’),
 0 => (OTHERS => ‘X’),
 OTHERS => (0=> ‘X’, 7=> ‘X’, OTHERS =>‘1’);

writes an ‘X’-box with ‘1’-fill into s_4by8. The reader is encouraged to
verify this pattern.

6.1.5.2 Non Integer Indexing. VHDL allows the use of any type
indication for index definition of arrays. In Figure 6.11, the 7
DOWNTO 0 range was used for the definition of the array in this fig-
ure. Instead of using a range, a type indication can be used for the
discrete range of an array. If an enumeration type is used for the dis-
crete range specification of an array, the array must be indexed using
the enumeration elements of this type. As an example, consider the
following declaration of the v4l_2d array.

TYPE v4l_2d IS ARRAY (v4l, v4l) OF v4l;

176 Chapter 6

This is a two-dimensional array that has v4l type elements. The v4l
type is also used as the two discrete ranges of this array. Therefore,
the enumeration elements of v4l must be used to access elements in
the v4l_2d array. The two-input NAND gate description in Figure
6.15 uses this array to describe a NAND gate in the v4l logic value
system. For this and other examples in this chapter, we assume that
the v4l_2d type is included in the BasicUtilities package and can be-
come visible by application of the use clause as shown in Figure 6.15.

LIBRARY utilities;
USE utilities.VerilogLogic.ALL;
USE utilities.BasicUtilities.ALL;

ARCHITECTURE tabular OF vlog_nand2 IS
 CONSTANT v4l_nand2_table : v4l_2d := (
 -- X 0 1 Z
 (‘X’,’1’,’X’,’X’), -- X
 (‘1’,’1’,’1’,’1’), -- 0
 (‘X’,’1’,’0’,’X’), -- 1
 (‘X’,’1’,’X’,’X’)); -- Z
BEGIN
 w <= v4l_nand2_table (a, b) AFTER (tplh + tphl)/2;
END ARCHITECTURE tabular;

Figure 6.15 Enumeration Type for Discrete Range of a Two-Dimensional Array

Figure 6.15 also shows the tabular architecture of vlog_nand2 of
Figure 6.5. Types v4l and v4l_2d are visible to this architecture. Since
v4l has four enumeration elements, the v4l_2d is a 4-by-4 array with
its rows and columns indexed as ‘X’, ‘0’, ‘1’, and ‘Z’. In the declarative
part of the tabular architecture of vlog_nand2, the v4l_nand2_table is
declared as a constant array of type v4l_2d, and it is initialized ac-
cording to the two-input NAND gate input-output mapping shown in
Figure 6.4. The statement part of this architecture consists of a signal
assignment whose right-hand side is a look-up into the
v4l_nand2_table.

Non-integer indexing can take advantage of named association
by specifying the exact name of an index. The constant in Figure 6.15
can be initialized to the same values using the following declaration:

CONSTANT v4l_nand2_table : v4l_2d := (
‘0’ => (OTHERS => ‘1’),
‘1’ => (‘0’ => ‘1’, ‘1’ => ‘0’, OTHERS => ‘X’),
OTHERS => (‘0’ => ‘1’, OTHERS => ‘X’));

VHDL Language Utilities and Packages 177

In this declaration, ‘0’, ‘1’, and ‘X’ values on the left-hand sides of the
association symbol, =>, are the names of indexes, while those on the
right-hand sides of this symbol are values for the constant array.

6.1.5.3 Unconstrained Arrays. VHDL allows the declaration of un-
constrained arrays. This is particularly useful for developing generic
descriptions or designs. The bounds of unconstrained arrays used for
formal parameters are determined according to the actual parameters
that are associated with them. The standard BIT_VECTOR is an un-
constrained one-dimensional array of BITs. In the STANDARD pack-
age, this type is declared as shown here:

TYPE BIT_VECTOR IS
 ARRAY (NATURAL RANGE <>) OF BIT;

This declaration defines BIT_VECTOR as an array with type BIT
elements and specifies that it can be indexed by any range of natural
numbers. NATURAL, also declared in the STANDARD package, is a
type for numbers ranging from 0 to the largest allowable integer. An-
other unconstrained array in the STANDARD package is the
STRING type. This type, shown below, is an unconstrained array of
characters; when indexing it, positive numbers should be used.

TYPE STRING IS
 ARRAY (POSITIVE RANGE <>) OF CHARACTER;

Similar to the declaration used in the standard package to define
BIT_VECTOR, the std_logic_1164 package defines an unconstrained
array of std_logic as shown here:

TYPE std_logic_vector IS
 ARRAY (NATURAL RANGE <>) OF std_logic;

Similarly, we define an unconstrained array for our Verilog compati-
ble type, v4l.

TYPE v4l_vector IS
 ARRAY (NATURAL RANGE <>) OF v4l;

Figure 6.16 shows syntax details for this type declaration. The index
definition of this array (which is read as "natural range box") indi-
cates that for a range specification of objects of this type or for other
type declarations that are based on this type, any descending or as-
cending range of natural numbers can be used.

178 Chapter 6

Figure 6.16 Syntax Details of an Unconstrained Array Declaration

To illustrate the use of unconstrained arrays, consider the one-
hot_data procedure shown in Figure 6.17. The target signal in the
formal parameters of this procedure is declared as an unconstrained
v4l vector. This procedure places one-hot values that are distanced in
time by ti on its target output. The number of data put on target is
passed to this procedure by constant n.

PROCEDURE onehot_data
 (SIGNAL target : OUT v4l_vector;
 CONSTANT ti : TIME; CONSTANT n : INTEGER)
IS
 VARIABLE data : v4l_vector (target’RANGE);
 VARIABLE i : INTEGER := 0;
BEGIN
 data (0) := ‘1’;
 WHILE i < n LOOP
 data := data(data’RIGHT) & data(data’LEFT DOWNTO 1);
 target <= TRANSPORT data AFTER ti * i;
 i := i + 1;
 END LOOP;
END PROCEDURE onehot_data;

Figure 6.17 A Generic Version of the onehot_data Procedure

The target parameter uses v4l_vector in Figure 6.16. To specify
the range of the intermediate variable (data); we have used tar-
get’RANGE. The data variable stores the binary result of this proce-
dure before assigning it to target. When an actual signal is associated
with the target formal parameter, target becomes an array signal
whose range is the same as that of the actual parameter. This range

VHDL Language Utilities and Packages 179

is then used for declaring data, making it a variable whose range is
the same as the range of the actual parameter associated with target.

Another use of unconstrained arrays is in the design of generic
hardware structures. Figure 6.18 shows a memory structure with an
unconstrained address space (address) and an unconstrained word
size (datain or dataout). Memory data and address ports are of
v4l_vector type that is an unconstrained array of v4l. In the behav-
ioral architecture of vlog_ram the mem two-dimensional uncon-
strained array type is declared. The elements of this array are all of
v4l type.

LIBRARY utilities;
USE utilities.VerilogLogic.ALL;

ENTITY vlog_ram IS
 PORT (address : IN v4l_vector;
 datain : IN v4l_vector; dataout : OUT v4l_vector;
 cs, rwbar : IN v4l; opr : IN BOOLEAN);
END ENTITY vlog_ram;
--
ARCHITECTURE behavioral OF vlog_ram IS
 TYPE mem IS ARRAY
 (NATURAL RANGE <>, NATURAL RANGE <>) of v4l;
BEGIN
 PROCESS
 CONSTANT memsize : INTEGER := 2**address’LENGTH;
 VARIABLE memory : mem (0 TO memsize-1, datain’RANGE);
 BEGIN
 id: IF opr’EVENT THEN
 IF opr=TRUE THEN init_mem (memory, "memdata.dat");
 ELSE dump_mem (memory, "memdump.dat"); END IF;
 END IF;
 wr: IF cs = ‘1’ THEN
 IF rwbar = ‘0’ THEN -- Writing
 FOR i IN dataout’RANGE LOOP
 memory (int(address), i) := datain (i);
 END LOOP;
 ELSE -- Reading
 FOR i IN datain’RANGE LOOP
 dataout (i) <= memory (int(address), i);
 END LOOP;

 END IF;
 END IF;
 WAIT ON cs, rwbar, address, datain, opr;
 END PROCESS;
END ARCHITECTURE behavioral;

Figure 6.18 A Generic Memory Model

180 Chapter 6

We are declaring a memory type that is an array of memory
words. This memory must be flexible for any word size and address
space. Because VHDL does not allow definition of an unconstrained
array of unconstrained elements, we are defining our memory as a
two-dimensional unconstrained array. The first range of this array is
treated as the memory size, and the second range as the word size.

A process statement in the behavioral architecture of vlog_ram
declares the memory variable having the two-dimensional mem type.
This process handles writing and reading to and from this memory.
The memsize constant is size of the memory and is calculated using
the length of the input address.

The body of the process statement has memory initialization,
dump, write, and read operations. The first if-statement (labeled id)
calls init_mem when opr becomes true and calls dump_mem when opr
becomes false. These procedures perform file I/O and will be ex-
plained in a later section in this chapter.

The if-statement in the body of the process statement of Figure
6.18 that is labeled wr handles write and read operations of the mem-
ory. For writing, datain is read bit-by-bit and the values are placed in
second index of memory. The first index of this array is indexed by
address. Reading from this memory is done in a similar fashion.

To keep this memory model general, all memory operations use.
‘LENGTH and ‘RANGE array attributes for looking up memory array
length and range. For this memory model to function properly,
dataout’RANGE and datain’RANGE used for writing and reading
must be the same. The model can be made more robust by including
an assert statement that reports any size difference or mismatch of
memory ports.

FUNCTION int (invec : v4l_vector) RETURN INTEGER IS
 VARIABLE tmp : INTEGER := 0;
BEGIN
 FOR i IN invec’LENGTH - 1 DOWNTO 0 LOOP
 IF invec (i) = ‘1’ THEN
 tmp := tmp + 2**i;
 ELSIF invec (i) = ‘0’ THEN
 tmp := tmp;
 ELSE
 tmp := 0;
 END IF;
 END LOOP;
 RETURN tmp;
END FUNCTION int;

Figure 6.19 Unconstrained Function int

VHDL Language Utilities and Packages 181

Because the type of memory that is mem is declared as having
NATURAL type indexes, memory must be indexed as such. For this
purpose we have used the int function that converts an unconstrained
v4l_vector type vector to an integer. This unconstrained function is
shown in Figure 6.19. We assume int is in the VerilogLogic package
and is made available to our vlog_ram entity by use of the USE clause
at the beginning of the code of Figure 6.18.
 Partial code for a testbench for vlog_ram is shown in Figure 6.20.
The architecture shown declares addr as a 6-bit vector, and ramin
and ramout as 8-bit vectors. Associating these vectors with the ports
of vlog_ram makes it memory of 32 8-bit words.

ENTITY vlog_ram_tester IS END ENTITY vlog_ram_tester;

ARCHITECTURE timed OF vlog_ram_tester IS
 SIGNAL ramin, ramout : v4l_vector (7 DOWNTO 0);
 SIGNAL addr : v4l_vector (5 DOWNTO 0);
 SIGNAL cs, rwbar : v4l;
 SIGNAL operate : BOOLEAN;
BEGIN
 UU1: ENTITY WORK.vlog_ram (behavioral)
 PORT MAP (addr, ramin, ramout, cs, rwbar, operate);
 operate <= TRUE AFTER 5 NS, FALSE AFTER 400 NS;
 cs <= ‘0’, ‘1’ AFTER 15 NS, ‘0’ AFTER 337 NS;
 rwbar <= ‘1’, ‘1’ AFTER 190 NS;
 addr <= "101100" AFTER 020 NS, "101110" AFTER 040 NS,...
 ramin <= "11110001" AFTER 010 NS, . . .

END ARCHITECTURE timed;

Figure 6.20 Testbench Instantiating an Unconstrained Memory

6.1.6 File Type and External File I/O
Specifying files is a two-step process of file type declaration and file
declaration. File declarations can be used to define a file type. Data is
associated with an identifier that is defined as a file type. This data
type is the type of the data contained in files of the specified type. The
following statement declares logic_data as a file type whose contents
are of the predefined CHARACTER type:

TYPE logic_data IS FILE OF CHARACTER;

This file type can be used in a file declaration to declare files of this
type for read, write, or append operations.
 Several options exist for declaring a file using a declared file
type. Anywhere from specifying just a file type to opening a physical
file can be specified with file declarations. Declarations of file types

182 Chapter 6

and files of certain types may appear in declarative parts of concur-
rent or sequential VHDL bodies. For file declaration examples, con-
sider the following:

FILE input_logic_value_file1 :
 logic_data;
FILE input_logic_value_file2 :
 logic_data IS “input.dat”;
FILE input_logic_value_file3 :
 logic_data OPEN READ_MODE IS “input.dat”;

The first statement specifies input_logic_value_file1 as the logical
name for a file of logic_data type. This file must be opened to be asso-
ciated with a physical file. An explicit OPEN statement must be used
for opening this file. The second statement specifies a logical file, as-
sociates it with a physical file on a host system, and opens the file in
READ_MODE. The third statement provides an option for opening a
file in READ_MODE, WRITE_MODE or APPEND_MODE.

If a file is to be opened in write or append modes, only the follow-
ing two options exist. The first option requires an explicit open state-
ment in which WRITE_MODE may be specified:

FILE output_logic_value_file1 :
 logic_data;
FILE output_logic_value_file2 :
 logic_data OPEN WRITE_MODE IS “input.dat”;

Data read or written to input_logic_value_file and out-
put_logic_value_file files in the above examples are in the extended
ASCII (elements of CHARACTER) form. An object of the CHARAC-
TER type must be associated with the operand that is used for read-
ing or writing these files.

6.1.6.1 Opening and Closing Files. A declared file, such as out-
put_logic_value_file1 that is not implicitly opened when it is declared
can be opened with an open statement. The following open state-
ments open files of the examples presented above. The READ_MODE
is the default and may be dropped.

FILE_OPEN (input_logic_value_file1,
 “input.dat”, READ_MODE);
FILE_OPEN (output_logic_value_file1,
 “output.dat”, WRITE_MODE);

An extra parameter of FILE_OPEN_STATUS type may be in-
cluded as the first parameter of the FILE_OPEN statement. Possible
values that are returned via this parameter are:

VHDL Language Utilities and Packages 183

OPEN_OK
STATUS_ERROR
NAME_ERROR
MODE_ERROR

The conditions under which these values are returned are self-
explanatory.

FILE_OPEN statements are procedure calls that can be called
from sequential or concurrent VHDL bodies. A FILE_OPEN state-
ment in a sequential VHDL body is executed every time the program
flow reaches it, while a concurrent FILE_OPEN statement is exe-
cuted only once at the beginning of a simulation run.

The logical name of a file that is being opened must be visible to
the open statement opening the file. When passing declared files, pa-
rameters of file type must be used. Similarly, the logical name of the
file is what is used for read, write, append and close file operations.

A FILE_CLOSE statement closes a declared file. The file being
closed must be visible in the region in which the close statement ap-
pears. Closing files for which open statements were used in the above
examples is done as follows:

FILE_CLOSE (input_logic_value_file1);
FILE_CLOSE (output_logic_value_file1);

When a READ_MODE file closes, opening it again for reading causes
reading to be done from the beginning of the file. When a
WRITE_MODE file closes, opening it again for writing to it will start
writing from the beginning, causing the previous contents to be over-
written. Opening a file in the APPEND_MODE enables writing to the
end of the file.

6.1.6.2 File READ and WRITE Operations. VHDL provides three
operations, READ, WRITE, and ENDFILE for the file types. READ
takes a filename and an object of the file data type as its argument. It
reads the next data from the file and places it in its data argument.
The arguments of the WRITE operation are similar to those of the
READ operation. This operation writes data into the specified file.
The ENDFILE operation takes a filename as its argument and re-
turns TRUE if a subsequent READ cannot be done from the file.
READ and WRITE operations are procedure calls, while ENDFILE is
a function call.
 As an example of a file type declaration and external file I/O,
consider the init_mem procedure shown in Figure 6.21. The first
statement shown in this figure declares v4lfiletype as a file type of
CHARACTER. This declaration must be made visible to any state-
ment that declares a file of this type.

184 Chapter 6

TYPE v4lfiletype IS FILE OF CHARACTER;

PROCEDURE init_mem
 (VARIABLE memory: OUT mem; CONSTANT datafile: STRING)
IS
 FILE v4ldata : v4lfiletype;
 VARIABLE v4lvalue : v4l;
 VARIABLE char : CHARACTER;
BEGIN
 FILE_OPEN (v4ldata, datafile, READ_MODE);
 FOR i IN memory’RANGE(1) LOOP
 FOR j IN memory’REVERSE_RANGE(2) LOOP
 READ (v4ldata, char);
 v4lvalue := chartov4l (char);
 memory (i,j) := chartov4l (char);
 END LOOP;
 READ (v4ldata, char);
 READ (v4ldata, char); -- read cr lf
 END LOOP;
END PROCEDURE init_mem;

Figure 6.21 Reading an External File

 The init_mem procedure takes the memory to initialize and
name of the physical file to read the initial (memory values) from. In
the declaration part of this procedure v4ldata file of v4lfiletype type is
declared. The FILE_OPEN procedure shown in this procedure opens
the physical file whose name is passed to this procedure via datafile.
Once the file is open, all characters are read from the file, they are
converted to the v4l type and are placed in appropriate positions in
the memory array. The `REVERSE_RANGE(2) attribute used for the
index range of the inner, for-loop in this procedure reads the range of
the second index (2) of memory.
 Figure 6.22 shows the dump_mem procedure that is structured
similar to init_mem. This procedure writes memory contents to the
physical file passed to it via its datafile formal parameter. This pro-
cedure uses the WRITE procedure to write CHARACTER type data
representing v4l values to the v4ldata logical file.
 The two procedures discussed here are used in the memory
model of Figure 6.18. In addition to being examples of using READ
and WRITE file I/O procedures, these procedures are also good exam-
ples of unconstrained arrays. The unconstrained memory model of
Figure 6.18 sizes its memory array according to address and word
length as it is instantiated. This memory is passed to init_mem and
dump_mem procedures that are also written as generic size proce-
dures.

VHDL Language Utilities and Packages 185

PROCEDURE dump_mem
 (VARIABLE memory: IN mem; CONSTANT datafile: STRING)
IS
 FILE v4ldata : v4lfiletype;
 VARIABLE v4lvalue : v4l; VARIABLE char : CHARACTER;
BEGIN
 FILE_OPEN (v4ldata, datafile, WRITE_MODE);
 FOR i IN memory’RANGE(1) LOOP
 FOR j IN memory’REVERSE_RANGE(2) LOOP
 v4lvalue := memory (i, j);
 WRITE (v4ldata, v4ltochar (v4lvalue));
 END LOOP;
 WRITE (v4ldata, cr);
 END LOOP;
END PROCEDURE dump_mem;

Figure 6.22 Writing into an External File

6.1.6.3 Passing Files. In the above examples we passed a filename
to our read or write procedure and performed our entire reading or
writing at once. Since the declarative part of a procedure renews each
time the procedure is called, a file declaration in this part causes the
file to initialize each time the procedure is called. This means that all
read operations always start from the beginning of the file and all
write operation always start a new file.
 Instead of passing a filename and starting a new file each time a
procedure is called, file declarations in the declarative part of a proc-
ess statement are executed only once at the beginning of the simula-
tion run and continuous read or write operations can be made into
the same file. Similarly, a file that is declared and opened in the dec-
laration part of an architecture opens only once from multiple reading
or writing. For situations that the use of a procedure is designed for
multiple readings or writings into the same file, a file object can be
declared outside of the procedure and passed to the procedure for
reading or writing. For example if the declaration,

FILE v4lDataVec : v4lfiletype IS “signaldata.dat”;

appears in the declarative part of an architecture, for the procedure
that is declared as shown below,

PROCEDURE AssignData
 (SIGNAL s : out v4l_vector; FILE f: v4lfiletype);

The following procedure call enables reading from signaldata.dat
to be done from where a previous call left off.

AssignData (s => targetsignal; f => v4lDataVec);

186 Chapter 6

 File I/O discussion in this section concentrated on the use of ba-
sic file handling primitives of VHDL. While this is sufficient for sim-
ple read and write operations, more complex file handling can become
very difficult using the basic primitives. The VHDL standard TEX-
TIO package provides several file types and their corresponding read
and write procedures that can be used for more complex file I/O appli-
cations.

6.2 VHDL Operators
Types and operators are related issues. The previous section pre-
sented type declarations; this section presents operators that operate
on operands of given types. The next section shows ways in which
operators can be defined for operand types that they are not defined
in the standard language.

As in any computer language, operators play a key role in func-
tions performed in VHDL. Operators in VHDL are similar to what
can be found in most software language, with the extra emphasis on
operators performing operations on logical operands. This section as-
sumes a general knowledge of programming languages; therefore
many language details of operators will not be presented.

6.2.1 Logical Operators
Logical operators consist of AND, OR, NAND, NOR, XOR, XNOR, and
NOT. The NOT operator is a unary operator, and all others use two
operands (binary operators). Logical operators perform on predefined
types BIT, BOOLEAN and BIT_VECTOR. When vectors are used, the
number of bits of the two operands must be the same. The following
statements show the valid use of operators, if operands in each
statement are of the same type and size:

x <= a XNOR b;
x_vector <= a_vector AND b_vector;

Strings representing operator symbols can be used as function
names for performing the same function as the operator they are rep-
resenting. For example, the above statements can be written as:

x <= “XOR” (a, b);
x_vector <= “AND” (a_vector, b_vector);

In this case, the order of the operands must stay the same in either
form of usage.

VHDL Language Utilities and Packages 187

6.2.2 Relational Operators
Relational operators operate on operands of the same type and return
a BOOLEAN TRUE or FALSE value. Operators in this group are =,
/=, <, <=, >, and >= with equal, not equal, less than, less than or
equal, greater than, and greater than or equal functionalities. The =
and /= operators operate on operands of any type. The other relational
operators perform their normal functions when used with scalar op-
erands. When array operands are used with these operators (<, <=, >,
and >=), they perform ordering operations and return TRUE or
FALSE based on values of array elements starting from the left. The
following paragraphs present relational and ordering examples.

For two integers of the same value, = returns TRUE. For inte-
gers i1>i2, the >, >=, and <= operations return TRUE, and the < op-
eration returns FALSE. In all operations the resulting target must be
of BOOLEAN type as shown below:

a_boolean <= i1 > i2;
b_boolean <= i1 /= i2;

Two one-dimensional arrays can be compared using relational opera-
tors. For this comparison, the relation between array elements in
considered. For array elements of enumeration type, the left-most
enumeration element has the smallest value and the right-most ele-
ment has the largest value. For the v4l type defined earlier in this
chapter, ‘X’ is the smallest, followed by ‘0’, and ‘1’, and ‘Z’ is consid-
ered the largest of these enumeration elements. For the predefined
type BIT, ‘1’ is greater than ‘0’ since BIT is defined as:

TYPE BIT IS (‘0’, ‘1’);

Assuming values of “00011” and “00100” for a_bit_vector and
b_bit_vector arrays, the relation,

a_bit_vector < b_bit_vector

returns TRUE. Evaluation begins with the left-most bits. As soon as
the third bit of a_bit_vector is found to have a smaller value than that
of b_bit_vector (‘0’ is less than ‘1’), the operator < completes its opera-
tion and returns TRUE.

For arrays of differing sizes, the same evaluation method holds.
If a_v4l_vector is “011Z” and b_v4l_vector is “0X”, the relation,

a_v4l_vector < b_v4l_vector

returns FALSE.

188 Chapter 6

6.2.3 Shift Operators
VHDL has shift operators for multiple shiftings with various shift
functions. Shift operation can be logical or arithmetic, left or right,
and shift or rotate. Figure 6.23 shows a complete list of shift operators
and their operations.

Shift/Rotate Left/Right Logical/Arithmetic
SLL Shift Left Logical
SLA Shift Left Arithmetic
SRL Shift Right Logical
SRA Shift Right Arithmetic
ROL Rotate Left Logical
ROR Rotate Right Logical

Figure 6.23 Shift Operators

These operators use two operands. The left operand is the array
that is being shifted, and the right operand is a positive or negative
integer specifying the number of shifts or rotate positions. Negative
shift positions change the direction of the operation. For example,
SLL with a negative number of shifts is equivalent to SRL with posi-
tive value of the same number for its shift positions. VHDL defines
the shift operators for arrays with BIT or BOOLEAN element types.
The next section shows how these and other operators can be defined
for other types such as our own v4l and the IEEE standard std_logic.
The result of a shift operation is an array of the same size of the left
operand.

A logical shift right (left) operation shifts an array to the right
(left), drops the right-most (left-most) element, and fills the left
(right) side of the array with a fill value. The fill value is the left most
enumeration element of the array element. For an array of BIT, the
fill value is ‘0’, and for v4l is ‘X’.

An arithmetic shift right (left) operation shifts its array operand
to the right (left) and uses the left-most (right-most) element for the
left (right) fill.

Figure 6.24 shows application of various shift operations on an
array of v4l (v4l_vector). The value of av that is the first operand of
shift operations in this figure is “Z01XZ101”

VHDL Language Utilities and Packages 189

Figure 6.24 Application of Shift Operators

6.2.4 Adding Operators
Addition, subtraction, and concatenation form the adding group of
operators. Add and subtract are defined for numeric types of INTE-
GER and REAL. Both operands of an adding operator must have the
same type. Add and subtract are not defined for BIT or BIT_VECTOR
types, but VHDL packages for defining such operations are available.

As with other operators, an adding operator can be used in the
following two formats:

a + b
“+” (a, b)

Operands of a concatenation operator must be arrays or ele-
ments of the same type. Concatenating two scalars of the same type
forms an array of size 2.

6.2.5 Sign Operators
Sign operators + and – are unary operators that apply to numeric
types.

6.2.6 Multiplying Operators
The four multiplying operators are *, /, MOD, and REM. Multiplica-
tion and division have their conventional mathematical meanings and
are defined for operands of the same type of INTEGER or REAL.

Both operands of MOD and REM operators must be of the IN-
TEGER type. The remainder, REM, operator returns the remainder
of integer division of the absolute value of its left operand by the ab-
solute value of its right operand. The sign of the result is the same as

190 Chapter 6

that of the left operand. The modulus, MOD, operator calculates the
modulus of its left and right operands. The sign of the result is the
same as that of the right operand.

6.2.7 Other Operators
The last group of operators fits in none of the above categories. At the
present time, ** (exponential) and ABS (absolute value) are in this
group. We leave this section open for any future operators that may
be added to the language.

6.2.8 Aggregate Operation
An aggregate operation combines one or more values into a complex
array or record type. We have used aggregates in this chapter for ar-
ray initializations. Assuming a and b are objects of BIT type, the fol-
lowing expressions are equivalent:

(a, b)
 a & b

The first expression uses an aggregate operation to form a 2-bit vec-
tor, and the second expression concatenates a and b together. Aggre-
gate operation can only be applied to elements of the same size and
type. Concatenation, on the other hand, can be used to concatenate
different-size arrays of the same element type.

An aggregate operation applies to records as well as arrays. The
next section shows examples of record aggregates. An aggregate can
be done on the left-hand side of a signal assignment. For example, the
following are valid signal assignments:

(a, b) <= a2;
(a, b) <= “10”;
(a, b) <= (‘1’, ‘0’);

The third statement uses aggregate on the right- and left-hand sides
of the signal assignment. The aggregate operation applies to elements
of user defined vector types as well as VHDL predefined types.

6.3 Operator and Subprogram Overloading
In VHDL, subprograms with the same name and different types of
parameters or results are distinguished from each other. A name
used by more than one such subprogram is said to be overloaded.
Overloading is a useful mechanism for using the same name for sub-

VHDL Language Utilities and Packages 191

programs that perform the same operation on data of different types.
VHDL allows overloading of user-defined subprograms, standard
functions, and operators.

6.3.1 Operator Overloading
Our first examples for overloading show how to define the basic logi-
cal operators for the v4l type defined in the previous section. Figure
6.25 shows logic tables for AND, OR and inversion operations in the
v4l logic value system. These tables are according to the Verilog 4-
value logic operations.

If one input of the “AND” function is ‘0’, the output is ‘0’ even if
the other input is unknown (‘X’). Similarly, if at least one input of the
“OR” function is ‘1’, the output becomes ‘1’. The “NOT” table is a repe-
tition of the logic value table for the inverter in Section 6.1, and is
shown here for completeness. Figure 6.26 shows the definition of the
“AND” function according to Figure 6.25. Other logical functions for
the v4l type are similarly defined. Such definitions overload the cor-
responding VHDL operators that are defined for the BIT and the
BOOLEAN types.

Figure 6.25 Verilog 4-Value Logic Operations Used for v4l

The description of Figure 6.26 uses the v4l_2d type definition of
Section 6.1.5. This type definition and various overloading functions
can become visible to designs using them by the use of packages. For
example, we can make overloading of various logic functions available
to our designs by including them in our VerilogLogic package.

When a design uses AND, OR, or NOT operators with BIT or
BOOLEAN operands, the standard VHDL operators are of the v4l
type, overloaded functions similar to the “AND” of Figure 6.26 are
used if they are visible to the design.
 As an example of using overloaded logical operators consider the
multiplexer example of Figure 6.27. As shown, ports of the multi-
plexer entity are declared as having type v4l. This type and its related

192 Chapter 6

overloaded operators are made visible to our design by the use of the
VerilogLogic package. This is compiled in the utilities library.

FUNCTION "AND" (a, b : v4l) RETURN v4l IS
 CONSTANT v4l_and_table : v4l_2d := (
 ‘X’ => (‘X’,’0’,’X’,’X’),
 ‘0’ => (‘0’,’0’,’0’,’0’),
 ‘1’ => (‘X’,’0’,’1’,’X’),
 ‘Z’ => (‘X’,’0’,’X’,’X’));
BEGIN
 RETURN v4l_and_table (a, b);
END "AND";

Figure 6.26 Overloading AND Logical Function for the v4l Four Value Logic System

 The booleanlevel architecture in Figure 6.27 uses AND, OR, and
NOT operations. Note that the operands of these operators on the
right hand side of w are all of type v4l. Because of this, the overloaded
AND, NOT, and OR of VerilogLogic are used instead of the standard
operators of VHDL. Recall that the standard operators of VHDL for
the BIT type are in the STD package of the STANDARD library.

LIBRARY utilities;
USE utilities.VerilogLogic.ALL;

ENTITY multiplexer IS
 PORT (a, b, s : IN v4l; w : OUT v4l);
END ENTITY;
--
ARCHITECTURE booloeanlevel OF multiplexer IS
BEGIN
 w <= (a AND NOT s) OR (b AND s);
END ARCHITECTURE booloeanlevel;

Figure 6.27 Using Overloaded Operators

For the next example of overloading, consider the expressions
used for calculating tplh and tphl delay parameters in cmos_not in
Figure 6.9. Physical type-to-integer and integer-to-physical type con-
versions were done in these expressions because the VHDL multipli-
cation operator is not defined for multiplying two physical types. By
overloading this operator as shown in Figure 6.28, it can be made to
accept resistance as the type of its first operand (left of the operator)
and capacitance as the type of its second operand (right of the opera-
tor) and to produce results of type TIME.

The "*" overloading function uses the definition of resistance and
capacitance physical types. In the statement part of this function, re-
sistance and capacitance physical types are neutralized to equivalent

VHDL Language Utilities and Packages 193

integers, and the result of multiplying these integers is multiplied by
the appropriate unit of type TIME. This time expression is returned
as the result of the function.

FUNCTION "*" (a : resistance; b : capacitance)
 RETURN TIME IS
BEGIN
 RETURN ((a / 1 l_o) * (b / 1 ffr) * 1 FS) / 1000;
END "*";

Figure 6.28 Overloading: Multiplying Resistance and Capacitance Resulting TIME

The rc_timed architecture of cmos_not shown in Figure 6.9 uses
the overloaded multiplication operator for calculating tplh and tphl
propagation delays. The first multiplication operator in the constant
value expressions of tplh or tphl is associated with the function in
Figure 6.28. The other multiplication operator uses the standard
VHDL operator. This example assumes that type v4l, physical resis-
tance and capacitance and the overloaded multiplication operator
available in the VerilogLogic and BasicUtilities packages that are
used in this design.

6.3.2 Subprogram Overloading
The final discussion in this section focuses on overloading system and
user-defined subprograms. Examples of system subprograms are
READ and WRITE procedures used in developing dump_mem (Figure
6.21) and init_mem (Figure 6.22) procedures for our memory model of
Figure 6.18. These tasks can be overloaded for reading and writing
any data type from the corresponding data files. Overloaded versions
of these procedures are provided in various text I/O packages such as
that of the VHDL standard and std-logic libraries. Chapter 8 dis-
cusses VHDL libraries and the use of such procedures.
 As an example of overloading user subprograms, consider the
dump_mem procedure in Figure 6.29. This procedure is the BIT ver-
sion of dump_mem in Figure 6.22, and is used for writing contents of
a memory to an external file. As shown in Figure 6.29 the type of
memory passed to this version of dump_mem is two-dimensional ar-
ray of bits. This formal parameter of the procedure distinguishes it
from dump_mem that was developed for memories of v4l data type
that was shown in Figure 6.22.
 Using init_mem and dump_mem, a memory model for BIT type
data, similar to that of Figure 6.18 is developed. This model uses the
int function that is an overloaded version of this function shown in
Figure 6.19. The BasicUtilities package that is included in the CD

194 Chapter 6

that accompanies this book includes the complete code of memory and
other utilities.

TYPE mem IS ARRAY (NATURAL RANGE <>,
 NATURAL RANGE <>) of BIT;
TYPE bit_filetype IS FILE OF CHARACTER;

PROCEDURE dump_mem (VARIABLE memory : IN mem;
 CONSTANT datafile : STRING) IS
 FILE BIT_data : BIT_filetype;
 VARIABLE BIT_value : BIT;
 TYPE BIT_char IS ARRAY (BIT) OF CHARACTER;
 CONSTANT BIT_tochar : BIT_char := (‘0’, ‘1’);
BEGIN
 FILE_OPEN (BIT_data, datafile, WRITE_MODE);
 FOR i IN memory’RANGE(1) LOOP
 FOR j IN memory’REVERSE_RANGE(2) LOOP
 BIT_value := memory (i, j);
 WRITE (BIT_data, BIT_tochar (BIT_value));
 END LOOP;
 WRITE (BIT_data, cr);
 END LOOP;
END PROCEDURE dump_mem;

Figure 6.29 Overloaded Memory Dump Procedure

6.4 Other Types and Type-Related Issues
Subtypes, records, and aliases are type-related issues that can be
used for hardware modeling and design. This section is devoted to the
description of these topics.

6.4.1 Subtypes
For a previously defined type, subtypes consisting of the subsets of
the values of the original type can be defined. The original type is
called the base type, and it is fully compatible with all its subtypes. In
VHDL, all types are subtypes of themselves. Because of this, the word
subtype is used to refer to all declared types and subtypes.

Subtypes are used when a subset of a previously defined type is
to be utilized and when compatibility with the base type is to be pre-
served. For example, consider defining bit_compatible_byte as:

SUBTYPE bit_compatible_byte IS BIT_VECTOR (7 DOWNTO 0);

This declaration makes objects that are declared as
bit_compatible_byte compatible with other objects whose base types

VHDL Language Utilities and Packages 195

are BIT_VECTOR. As a counter example, consider the declaration of
byte_of_bits as:

TYPE byte_of_bits IS ARRAY (7 DOWNTO 0) OF BIT;

If an object of type byte_of_bits is to be assigned to an 8-bit
BIT_VECTOR object, or if such objects are to be used in an expres-
sion, the use of explicit type conversions from byte_of_bits to
BIT_VECTOR or vice versa is required.

A subtype can be declared to have a range of enumeration ele-
ments of an enumeration type. For example, the following subtype
declaration defines bcd_numbers as a subtype whose elements are
integers between 0 and 9:

SUBTYPE bcd_numbers IS INTEGER RANGE 0 TO 9;

Objects of type bcd_numbers can be used in the same expressions
with INTEGER type objects without requiring any form of a type
conversion.

The definition of a general multi-level logic value system, on
which the definition of other logic value systems can be based, is an
important application of this concept. For example, based on our v4l
type, subtypes such as v3l and v2l can be defined as shown here:

SUBTYPE v3l IS v4l RANGE ‘0’ TO ‘Z’;
SUBTYPE v2l IS v4l RANGE ‘0’ TO ‘1’;

According to these declarations, the v3l type is a three-value logic sys-
tem that contains enumeration elements of ‘0’, ‘1’, and ‘Z’, and the v2l
type is a two-value logic which contains ‘0’ and ‘1’. The base type for
both of these subtypes is v4l.

Assigning an object of a smaller subtype, e.g., v2l, to an object of
a larger subtype, e.g., v4l, can be done directly, and there is no need
for any type conversion. The opposite is also possible, except that if an
out-of-range value is assigned to the object of the smaller subtype, a
simulation warning message will be issued.

In our example, the v2l subtype contains all the enumeration
elements of the predefined BIT type. These two types, however, are
not compatible, so type conversion by means of a user function is re-
quired for assignments or operations that involve these two types.

6.4.2 Record Types
Arrays are composite types whose elements are all of the same type.
Records are also of the composite class, but they can consist of ele-
ments of different types. A record type definition consists of the decla-

196 Chapter 6

ration of the elements of the record that is bracketed between the
RECORD keyword and END RECORD keywords. Each record ele-
ment declaration declares one or more identifiers and their types.

For example, consider an instruction format for a simple com-
puter that has eight operations, four addressing modes, and an ad-
dress space of 211 words. Figure 6.30a shows the instruction format
and the type declarations for these three fields. The opcode is an enu-
meration type whose elements are the instruction mnemonics, the
addressing mode is an integer ranging from 0 to 3, and the address is
an 11-bit BIT_VECTOR.

TYPE opcode IS (sta, lda, add, sub, and, nop, jmp, jsr);
TYPE mode IS RANGE 0 TO 3;
TYPE address IS BIT_VECTOR (10 DOWNTO 0);

(a)

TYPE instruction_format IS RECORD
 opc : opcode;
 mde : mode;
 adr : address;
END RECORD;

(b)

SIGNAL instr : instruction_format
 := (nop, 0, "00000000000");

(c)

instr.opc <= lda;
instr.mde <= 2;
instr.adr <= "00011110000";

(d)

instr <= (adr => (OTHERS => ‘1’), mde => 2, opc => sub)

(e)
Figure 6.30 Record Type, (a) Three Instruction Fields, (b) Declaration of Instruction
Format, (c) A Signal of Record Type, (d) Referencing Fields of a Record Type Sig-
nal, (e) Record Aggregate.

In Figure 6.30b, the instruction_format type is declared as a re-
cord that contains three fields of opc, mde, and adr of types opcode,
mode, and address, respectively. A signal of type instruction_format,
shown in Figure 6.30c, is declared, and the fields of this signal (instr)

VHDL Language Utilities and Packages 197

are initialized to nop, 0, and "00000000000". Figure 6.30d shows
three signal assignments assigning values to the instr signal field.
Finally, Figure 6.30e shows assignments to instr using a record ag-
gregate with named association. In this assignment, the adr field re-
ceives the “11111111” value, mde becomes 2, and opc receives sub.
Association by position can also be done for this assignment.

6.4.3 Alias Declaration
An object, an indexed part of it, or a slice of it can be given alternative
names by using an alias declaration. This declaration can be used for
signals, variables, or constants, and it can define new identifiers of
the same class and type.

As an example, consider a flag register that is declared as a 4-bit
BIT_VECTOR with a descending 3 DOWNTO 0 range. Starting with
the most-significant bit, the bits of this register are carry, overflow,
negative, and zero flags. The declarations shown below specify aliases
for each of the bits in the flag register:

ALIAS c_flag : BIT IS flag_register(3);
ALIAS v_flag : BIT IS flag_register(2);
ALIAS n_flag : BIT IS flag_register(1);
ALIAS z_flag : BIT IS flag_register(0);

With these declarations, the equivalent identifiers can be used in-
stead of indexing the flag_register. An alias declaration specifies an
identifier, its type, and the name of an object the identifier becomes
an alias of.

(a)

ALIAS page :
 BIT_VECTOR (2 DOWNTO 0) IS instr.adr (10 DOWNTO 8);
ALIAS offset :
 BIT_VECTOR (7 DOWNTO 0) IS instr.adr (7 DOWNTO 0);

(b)

page <= "001";
offset <= X"F1";

(c)
Figure 6.31 Alias Declaration, (a) Page and Offset Addresses, (b) Alias Declaration
for the Page and Offset Parts of the Address, (c) Assignments to Page and Offset
Parts of Address

198 Chapter 6

For an example of using an alternative name for a slice of an ar-
ray, consider the address field of the instruction_format in Figure
6.30. This 11-bit address can consist of a 3-bit page address and an 8-
bit offset address, as shown in Figure 6.31a. The alias declarations in
Figure 6.31b equate page to the 3 most-significant bits of the address
field of an instruction and offset to its 8 least-significant bits. Figure
6.31c shows signal assignment to page and offset aliases. These as-
signments result in assigning an 11-bit address to the adr field of
instr.

6.4.4 Access Types
Some of the material presented in this chapter thus far may appear
to be irrelevant to a hardware design environment and may seem to
be at a much higher level than a hardware designer ever needs. On
the other hand, in the earlier chapters we mentioned that VHDL is a
language not only for the description of hardware, but for modeling a
complete hardware design, test and verification environment. Certain
hardware/software applications can also use VHDL for evaluation of
hardware algorithms that run along side with software applications.

A high level utility in the VHDL language is the ACCESS type
for definition of pointers and generation of linked lists. Examples of
applications of linked lists are in large-memory modeling, test bench
generation, dynamic modeling of FIFOs and stacks, and dynamic
fault lists. In this section, we show VHDL declarations necessary for
defining a linked list and example procedures for manipulating the
list.

6.4.4.1 Linked-list Definition. An example linked list with a node
containing an integer data and a link for pointing to the next node is
shown in Figure 6.32a. This list is identified by Buffer which is the
pointer that points to the first node. For an empty list Buffer is
NULL. Each node has a data part and a link part. An integer type is
assumed for the data in this example. The first pointer that identifies
the list is considered the head of the list.

Figure 6.32 shows the graphical representation of a linked list
and its corresponding VHDL declarations. The first statement is an
incomplete type declaration that defines node as a type to which a
pointer will be assigned. The next statement is an ACCESS type dec-
laration, defining pointer for accessing elements of type node. The last
statement is a record type declaration that specifies the type of node
as a record containing data and a link that has the type of pointer.
This same type is also used for the head of the list. The pointer type
used within this node is the required type for a node to point to an
element of this same type.

VHDL Language Utilities and Packages 199

TYPE node;
TYPE pointer IS ACCESS node;
TYPE node IS RECORD
 data : INTEGER;
 link : pointer;
END RECORD;

Figure 6.32 Linked List Graphical Representation and Definition in VHDL

6.4.4.2 Using a Linked List. Example procedures for entering data,
removing data, and clearing a linked list are presented here. A linked
list based on declarations of Figure 6.32 is identified by a variable of
type pointer. Such a variable must have an initial value of NULL.
The following shows declaration of Buff as the head of a linked list to
be created.

VARIABLE Buff : pointer := NULL;

The following assignment creates the first new node and assigns it to
Buff.

Buff := NEW node;

The next new node is linked to Buff by the use of the following as-
signment:

Buff.link := NEW node;

 Figure 6.33 shows a procedure that takes an existing linked list
as input and appends an integer to the end of it. We assume the
pointer of the linked list is of pointer type above, and its nodes are of
the node type declared above. As specified in the declarations, data
types in this linked list are of the INTEGER type.

200 Chapter 6

PROCEDURE insert
 (VARIABLE head : INOUT pointer; din : INTEGER)
IS
 VARIABLE t1 : pointer;
BEGIN
 -- Insert a node with value din
 IF head=NULL THEN
 head := NEW node;
 head.data := din;
 head.link := NULL;
 REPORT "The List was originally empty!";
 ELSE
 t1 := head;
 WHILE t1.link /= NULL LOOP
 t1 := t1.link;
 END LOOP;
 t1.link := NEW node;
 t1 := t1.link;
 t1.data := din;
 t1.link := NULL;
 END IF;
REPORT "Value:"&INTEGER’IMAGE(din)&" inserted!";
END insert;

Figure 6.33 Creating a linked list and entering data

 The head of the linked list has the type of pointer and is passed
to this procedure. If the linked list is empty, the head is Null and if it
already contains data it is a pointer to a node. The while-loop shown
in Figure 6.33 starts from the head of the linked list and finds the
first null pointer. When done, t1 is the first Null pointer. Following
this, a NEW node is created and assigned to t1. The data field of t1
gets the new integer (din) and its pointer gets Null. Assignment of
din and Null to t1 can be done by aggregating them as shown below:

t1 := (din, Null);

Figure 6.34 shows another procedure for the linked list that we
are discussing. This procedure removes the link with value v from the
linked list. The head of the list is passed to the remove procedure via
its head argument. In the body of procedure, the node with value v is
searched for, and when found, the pointer to it is set to the node that
it points to. When this rearrangement of pointers takes place, the
node with value v is freed by use of DEALLOCATE.

VHDL Language Utilities and Packages 201

PROCEDURE remove
 (VARIABLE head : INOUT pointer; v : IN INTEGER)
IS
 VARIABLE t1, t2 : pointer;
BEGIN

 t1 := head;
 t2 := head;
 IF head /= NULL THEN
 IF head.data = v THEN
 head := head.link;
 REPORT "Value:"&INTEGER’IMAGE(v)&
 " was in the head and removed!";
 ELSE
 WHILE t1 /= NULL LOOP
 IF t1.data = v THEN
 t2.link := t1.link;
 REPORT "Value:"&INTEGER’IMAGE(v)&
 " removed!";
 EXIT;
 ELSE
 t2 := t1;
 END IF;
 t1 := t1.link;
 END LOOP;
 END IF;

 IF (t1 = NULL) THEN
 REPORT "Value: "&INTEGER’IMAGE(v)&
 " doesn’t exist in the list!";
 END IF;
 ELSE
 REPORT "The List is empty! Can’t remove.";
 END IF;

END remove;

Figure 6.34 Removing an Item From a Linked List

 Figure 6.35 shows the clear procedure that frees all nodes of the
linked list that is passed to it. As with other procedures discussed,
the head of the linked list is passed to this procedure via the INOUT
head argument. Initially head is set to Null and then all nodes are
deallocated until a node is found that has a Null pointer.

202 Chapter 6

PROCEDURE clear (VARIABLE head : INOUT pointer) IS
 VARIABLE t1, t2 : pointer;
BEGIN
 -- Free all the linked list
 t1 := NEW node;
 t1 := head;
 head := NULL;
 WHILE t1 /= NULL LOOP
 t2 := t1;
 t1 := t1.link;
 DEALLOCATE (t2);
 END LOOP;
 REPORT "The List cleared successfully!";
END clear;

Figure 6.35 Freeing a Linked List

 With the above linked list utilities, new linked lists of this for-
mat can be declared using the variable declaration shown below. For
appending a data element to the end of the list the insert procedure
must be called. The example shown below adds a node to fifo and sets
its value to 25. For removing the node, the remove procedure must be
called. The example shown below removes node with value 26 from
fifo. For clearing fifo the clear procedure must be called.

VARIABLE fifo, stack : pointer := Null;
 . . .
 insert (fifo, 25);

remove (fifo, 26);
clear (fifo);

6.4.5 Global Objects
A signal declared in a package can be written to or read by all VHDL
bodies that the package is visible to. Concurrent writing to a shared
signal will be possible only if the signal is resolved, as will be dis-
cussed in the next chapter. A function for resolving multiple driving
values is defined for resolved signals.

Because of concurrency in the language, conflicts and indetermi-
nacy may be caused with shared or global variables. In spite of this,
VHDL allows shared variables to be declared in packages and archi-
tectures. A shared variable declared in a package is accessible to all
bodies that use the package. The scope of shared variables declared in
an architecture is only within the body of the architecture. An exam-
ple shared variable declaration is:

SHARED VARIABLE dangerous : INTEGER := 0;

VHDL Language Utilities and Packages 203

Shared variables are not protected against multiple simultaneous
read and write operations. However, signal semaphores for creating
such a protection can be done in VHDL.

6.4.6 Type Conversions
For cases that types of operands or expressions are not known from
the context in which they are used in, or in cases when a nondefault
conversion is to be enforced, type conversions may be used. VHDL
offers two mechanisms for this purpose.

6.4.6.1 Qualifiers. The first mechanism for type adaptation in
VHDL is using qualifiers and the other is using explicit conversions.

An expression or an aggregate may be qualified to a specific type
using a type qualifier. Consider the last signal assignment (labeled
SA8) in Figure 6.12 (repeated below for reference). The right-hand
side of this statement clearly specifies the type and values of the
right-hand side. However, in the statement shown below (labeled
SA9) with the same left-hand side as SA8, the type of the right hand
side cannot uniquely be determined. The right-hand-side aggregate
may be ‘X’ values of v4l type, or may be ‘X’ values of the predefined
CHARACTER type.

SA8: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <=
 s_byte (5 DOWNTO 2);

SA9: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <=
 (OTHER => ‘X’);

Because of this ambiguity, a qualifier such as that shown in the fol-
lowing is necessary on the right hand side of the signal assignment.
In this statement ‘X’s are qualified for size and element type.

SA9: (s_byte(0), s_byte(1), s_byte(2), s_byte(3)) <=
v4l_byte’(OTHER => ‘X’);

6.4.6.2 Explicit Type Conversions. The other mechanism for type
adaptation is using explicit conversions.

Explicit type conversions perform conversions between closely re-
lated types. INTEGER and REAL types are closely related. Array
types with same type elements or array types with same elements of
the same base type are also considered to be closely related. Consider,
for example, the following type and signal declarations:

TYPE v4l_byte IS ARRAY (7 DOWNTO 0) of v4l;
TYPE v4l_octal IS ARRAY (7 DOWNTO 0) of v4l;

204 Chapter 6

 . . .
SIGNAL sb : v4l_byte;
SIGNAL so : v4l_octal;

Types of sb and so are different and, therefore, the assignment shown
below is not allowed:

sb <= so;

On the other hand, an explicit type conversion can be used to convert
the type of so to that of sb. The first statement shown below converts
so of type v4l_octal to its closely related type of v4l_byte and assigns it
to sb of type v4l_byte. The second statement converts sb of type
v4l_byte to its closely related type of v4l_octal and assigns it to so of
type v4l_octal.

sb <= v4l_byte (so);
so <= v4l_octal (sb);

6.4.7 Standard Nine-Value Logic
Chapter 5 presented basics of the 1164 IEEE standard. With the ma-
terial presented in this chapter we are now able to present some other
details related to the std_logic type. The package is compiled in the
IEEE library, and it is named std_logic_1164. The following state-
ments make all std_logic utilities available to a design:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

The standard defines std_logic as an enumeration type with nine
logic values. Since ‘U’ is defined as the first enumeration element,
this value is considered as the default initial value. The
std_logic_vector is an unconstrained array of std_logic. Arrays of this
type can be declared with any range or size.

All logical and shift operators are overloaded for std_logic and
std_logic_vector. Therefore, no change in operator names needs to be
made when going from BIT to the more general std_logic logic value
system.

The standard logic package includes subtypes for smaller logic
value sets. Figure 6.36 shows std_logic subtypes and their enumera-
tion elements. Conversion functions for all subtypes and the BIT type
to and from std_logic are included in the package. For example, the
To_StdLogicVector function converts its BIT_VECTOR operand to
std_logic_vector. Appendices of this book include a listing of std_logic
utilities, and other related packages.

VHDL Language Utilities and Packages 205

TYPE

X01 ‘X’, ‘0’, ‘1’

X01Z ‘X’, ‘0’, ‘1’, ‘Z’

UX01 ‘U’, ‘X’, ‘0’, ‘1’

UX01Z ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’

Figure 6.36 std_logic Sub-types

6.5 Predefined Attributes
Predefined attributes in VHDL provide functions for more efficient
coding or mechanisms for modeling hardware characteristics. Attrib-
utes can be applied to arrays, types, signals, and entities, and they
have the format shown below. When reading this, the single quote (‘)
is read as tick.

array_or_type_or_signal_or_entity_name’ATTRIBUTE_NAME

This section discusses array, type, signal and entity attributes.
All the predefined attributes are listed and categorically discussed.
Examples are shown only for key attributes; other attributes are used
in the examples in the chapters that follow.

6.5.1 Array Attributes
Array attributes are used to find the range, length, or boundaries of
array objects. These attributes can only be used with array objects,
and do not apply to scalars. In order to present examples of these at-
tributes we use the two-dimensional s_4by8 signal of Figure 6.12. The
type and declaration of this signal are repeated here for reference.

TYPE v4l_4by8 IS ARRAY (3 DOWNTO 0, 0 TO 7) of v4l;
 SIGNAL s_4by8: v4l_4by8;

 As shown, s_4by8 is a two-dimensional array with two range
specifications. The first range specification (referred to as (1)) is de-
scending with 3 being its left index and 0 its right index. The second
range specification (2) is an ascending range. Figure 6.37 shows ex-
amples of the predefined array attributes as they are applied to the
s_4by8 signal. A number in parentheses can follow an array attribute.
For multi-dimensional arrays, this number indicates the index range
of the array.

206 Chapter 6

 Attribute Description Example Result

‘LEFT Left bound s_4by8 ‘LEFT 3

‘RIGHT Right bound s_4by8 ‘RIGHT
s_4by8 ‘RIGHT(2)

0
7

‘HIGH Upper bound s_4by8 ‘HIGH(2) 7

‘LOW Lower bound s_4by8 ‘LOW(2) 0

‘RANGE Range s_4by8 ‘RANGE(2)
s_4by8 ‘RANGE(1)

0 TO 7
3 DOWNTO 0

‘REVERSE_RANGE Reverse range s_4by8 ‘REVERSE_RANGE(2)
s_4by8 ‘REVERSE_RANGE(1)

7 DOWNTO 0
0 TO 3

‘LENGTH Length s_4by8 ‘LENGTH 4

‘ASCENDING TRUE
If Ascending

S_4by8 ‘ASCENDING(2)
s_4by8 ‘ASCENDING(1)

TRUE
FALSE

Figure 6.37 Predefined Array Attributes.

The examples in the previous chapters used ‘RANGE and
‘LENGTH attributes. More examples, based on array_x being an ar-
ray object with ascending range, are shown here:

The following condition is true:
condition array_x’LEFT < array_x’RIGHT is true.

The two ranges shown in the following two lines are equivalent:
array_x’LEFT TO array_x’RIGHT
array_x’RANGE

The two expressions shown in the following two lines are equivalent:
array_x’HIGH - array_x’LOW + 1
array_x’LENGTH

The two expressions shown in the following two lines are equivalent:
array_x (array_x’LOW)
Value of element of array_x at the location of its lowest index.

6.5.2 Type Attributes
Type attributes are used for accessing elements of defined types and
are only valid for scalar types. Although several type and array at-
tributes use the same names, it is important to realize that their
meanings may be different. For example, when applied to an enu-
meration type, the ‘RIGHT type attribute results in the right-most
enumeration element of that type. Attributes ‘BASE, ‘LEFT, ‘RIGHT,
‘HIGH, and ‘LOW can be applied to any scalar type, while attributes

VHDL Language Utilities and Packages 207

‘POS, ‘VAL, ‘SUCC, ‘PRED, ‘LEFTOF, and ‘RIGHTOF can only be
used with an integer type, an enumeration type, or a physical type.
For example, using ‘VAL(2) with an enumeration type results in the
enumeration element in position 2 for the enumeration type. Enu-
meration elements are numbered from left to right starting with 0.

Figure 6.38 shows VHDL type attributes and presents an exam-
ple for each one. The examples refer to v4l, v3l, v2l, and opcode types
presented earlier in this chapter and are repeated here for reference.

TYPE v4l IS (‘X’, ‘0’, ‘1’, ‘Z’);
SUBTYPE v3l IS RANGE ‘0’ TO ‘Z’;
SUBTYPE v2l IS RANGE ‘0’ TO ‘1’;
TYPE opcode IS (sta, lda, add, sub, and, nop, jmp, jsr);

Attribute Description Example Result

‘BASE Base of type v3l’BASE v4l

‘LEFT Left bound of type
or subtype

v3l’LEFT
v4l’LEFT

‘0’
‘X’

‘RIGHT Right bound of type
or subtype

v3l’RIGHT
v4l’RIGHT

‘Z’
‘Z’

‘HIGH Upper bound of type
or subtype

INTEGER’HIGH
v3l’HIGH

Large
‘Z’

‘LOW Lower bound of type
or subtype

POSITIVE’LOW
v4l’LOW

1
‘X’

‘POS(V) Position of value V
in base of type.

v4l’POS(‘Z’)
v3l’POS(‘X’)

3
0

‘VAL(P) Value at Position P
in base of type.

v4l’VAL(3)
v3l’VAL(3)

‘Z’
‘Z’

‘SUCC(V) Value, after value
V in base of type.

v3l’SUCC(‘1’) ‘Z’

‘PRED(V) Value, before value
V in base of type.

v3l’PRED(‘1’) ‘0’

‘LEFTOF(V) Value, left of value
V in base of type.

v3l’LEFTOF(‘1’)
v3l’LEFTOF(‘X’)

‘0’
Error

‘RIGHTOF(V) Value, right of value
V in base of type.

v3l’RIGHTOF(‘1’)
v3l’RIGHTOF(‘X’)

‘Z’
‘0’

‘ASCENDING TRUE if range is ascending v4l’ASCENDING TRUE

‘IMAGE (V) Converts value
V of type to string.

v4l’IMAGE(‘Z’)
opcode’IMAGE(lda)

“Z”
“lda”

‘VALUE(S) Converts string
S to value of type.

opcode’VALUE(“nop”) nop

Figure 6.38 Predefined Type Attributes.

208 Chapter 6

The results of attributes ‘LEFT, ‘RIGHT, ‘HIGH, ‘LOW, and ‘AS-
CENDING correspond to the values of the types or subtypes that they
are applied to, while the ‘IMAGE, ‘VALUE, ‘POS, ‘VAL, ‘SUCC,
‘PRED, ‘LEFTOF, and ‘RIGHTOF attributes perform the specified
functions on the base of the subtype. For example, v3l’POS(‘X’) results
in 0, which is the position of ‘X’ in the v4l type. Notice that ‘X’ is not
even contained in the v3l subtype.

6.5.3 Signal Attributes
Signal attributes are used for objects in the signal class of any type.
Such attributes are used for finding events, transactions, or timings
of events and transactions on signals. These attributes are most use-
ful for modeling hardware properties.

Attributes ‘STABLE, ‘EVENT, ‘LAST_EVENT, and ‘LAST_VALUE
deal with events occurring on a signal. For example, when ‘EVENT is
used with a signal, the result is true (BOOLEAN TRUE) when an
event occurs on that signal, that is, when the value of the signal
changes. Attributes ‘QUIET, ‘ACTIVE, ‘LAST_ACTIVE, and
‘TRANSACTION have to do with the transactions that occur on a
signal. For example, s_signal’ACTIVE is true when a transaction oc-
curs on the s_signal, even if the transaction does not cause a change
of value on this signal.

The results of the attributes ‘DELAYED, ‘STABLE, ‘QUIET, and
‘TRANSACTION are signals and can be used like signal objects. For
example, s_signal’DELAYED’ STABLE is only valid because
s_signal’DELAYED results in a signal to which the ‘STABLE signal
attribute can be applied.

Figure 6.39 presents a list of the signal attributes and gives a
simple example for each one, showing the kind and type of the result.
Also shown in this figure is a box indicating whether the attribute
deals with transactions or events on a signal. The s1 signal used in
the examples is assumed to be a scalar signal of type BIT. Signal at-
tributes are time-dependent, which means that their values may
change continuously during simulation.

Figure 6.40 shows an example waveform on s1 and the result of
using various attributes with this BIT type signal. The waveform
shown here includes transactions and events. Each transaction is in-
dicated by a rectangular block () of duration on the waveform.
Events occur when a transaction causes the value of s1 to change.
Those attributes whose results are of the type of signal that they are
applied to (type BIT for signal s1) are shown by logical waveforms,
and those with BOOLEAN or BIT results (independent of type of s1)
are indicated with shaded blocks. Attributes that result in a signal
are shown in the bold font.

VHDL Language Utilities and Packages 209

Attribute T/E Example Kind Type

Attribute description for the specified example

‘DELAYED - s1’DELAYED (5 NS) SIGNAL As s1

A copy of s1, but delayed by 5 NS. If no parameter or 0, delayed by delta. Equivalent to
TRANSPORT delay of s1.

‘STABLE EV s1’STABLE (5 NS) SIGNAL BOOLEAN

A signal that is TRUE if s1 has not changed in the last 5 NS. If no parameter or 0, the
resulting signal is TRUE if s1 has not changed in the current simulation time.

‘EVENT EV s1’EVENT VALUE BOOLEAN

In a simulation cycle, if s1 changes, this attribute becomes TRUE.

‘LAST_EVENT EV s1’LAST_VALUE VALUE TIME

The amount of time since the last value change on s1. If s1’EVENT is TRUE, the value of
s1’LAST_VALUE is 0.

‘LAST_VALUE EV s1’LAST_VALUE VALUE As s1

The value of s1 before the most recent event occurred on this signal.

‘QUIET TR s1’QUIET (5 NS) SIGNAL BOOLEAN

A signal that is TRUE if no transaction has been placed on s1 in the last 5 NS. If no pa-
rameter or 0, the current simulation cycle is assumed.

‘ACTIVE TR s1’ACTIVE VALUE BOOLEAN

If s1 has had a transaction in the current simulation cycle, s1’ACTIVE will be TRUE for
this simulation cycle, for delta time.

‘LAST_ACTIVE TR s1’LAST_ACTIVE VALUE TIME

The amount of time since the last transaction occurred on s1. If s1’ACTIVE is TRUE,
s1’LAST_ACTIVE is 0.

‘TRANSACTION TR s1’TRANACTION SIGNAL BIT

A signal that toggles each time a transaction occurs on s1. Initial value of this attribute is
not defined.

‘DRIVING - s1’DRIVING VALUE BOOLEAN

If s1is being driven in a process, s1’DRIVING is TRUE in the same process.

‘DRIVING_VALUE - s1’DRIVING_VALUE VALUE As s1

The driving value of s1 from within the process this attribute is being applied.

Figure 6.39 Predefined Signal Attributes. Signal s1 is of Type BIT

210 Chapter 6

Figure 6.40 Results of Signal Attributes when Applied to the BIT Type Signal, s1

Common applications of signal attributes include edge detection,
pulse-width verification, glitch detection, and level mode analysis.
For example, the ‘EVENT attribute in an edge-trigger flip-flop can
check for a change in the value of the clock, that is, an edge of a clock.
Let us consider the description of the falling-edge D-type flip-flop in
Figure 6.41. The statement part of this description consists of a condi-
tional signal assignment which conditionally assigns the D-input to q.
The condition of the conditional signal assignment becomes TRUE if
(1) c is zero and (2) c has had an event during the current simulation
cycle. In other words, the condition is TRUE if c changes, and this
change causes it to be ‘0’. Clearly, this condition detects the falling
edge of c in the current simulation cycle.
 Although c’EVENT and NOT c’STABLE are equivalent in many
cases, because ‘STABLE is itself a signal, different results can be pro-
duced when using ‘EVENT or ‘STABLE in concurrent statements.
Consider, for example, the partial codes shown in Figure 6.42 for as-
signments to qf and ql. The qf signal is a flip-flop output while ql is a
latch output.

VHDL Language Utilities and Packages 211

ENTITY brief_d_flip_flop IS
 PORT (d, c : IN BIT; q : OUT BIT);
END brief_d_flip_flop;
--
ARCHITECTURE falling_edge OF brief_d_flip_flop IS
 SIGNAL tmp : BIT;
BEGIN
 q <= d WHEN (c = ‘0’ AND c’EVENT);
END falling_edge;

Figure 6.41 A Simple Falling Edge Flip-Flop Using Signal Attributes

FF: BLOCK (c = ‘0’ AND NOT c’STABLE) BEGIN
 qf <= GUARDED din;
END BLOCK FF;
--
LT: BLOCK (c = ‘0’ AND c’EVENT) BEGIN
 ql <= GUARDED din;
END BLOCK LT;

Figure 6.42 Comparing ‘STABLE and ‘EVENT

 Assignment to qf in Figure 6.42 is a guarded assignment using a
guard expression that involves the ‘STABLE attribute. When c makes
a transition to ‘0’, the guard expression becomes true. Since c is a sig-
nal, the change in the value of c causes the guarded signal assign-
ment to qf to wakeup. And since this change makes the guard expres-
sion to become TRUE, din connects to qf. At this exact simulation
time, the value of NOT c‘STABLE is also true. In the next simulation
cycle, that c has already been ‘0’ for one simulation cycle, c is consid-
ered to be stable. Because of this, the NOT c’STABLE expression be-
comes false. In this simulation cycle, since c’STABLE itself is a sig-
nal, its change in value causes the guard expression of qf to see an
event. This event causes the evaluation of the right hand side of qf. In
this evaluation, the guard expression is false and, therefore, causes
din to disconnect from qf. The end result is that din is connected to qf
for only one simulation cycle. Since this time coincides with the fal-
ling edge of c, qf becomes the output of a falling edge D-flip-flop.
 The situation with the ql output shown in Figure 6.42 is different
than that of qf. In the first simulation cycle that c changes to ‘0’ the
guard expression of ql sees an event and at the same time evaluates
to TRUE. This causes din to connect to ql. In the next simulation cy-
cle, c has not had an event and therefore c’EVENT is FALSE. How-
ever, because c’EVENT is not a signal, the c’EVENT expression be-
coming FALSE does not cause the expression on the right hand side
of ql to evaluate. This means that the TRUE value of the guard ex-
pression remains TRUE until another event occurs on one of the sig-

212 Chapter 6

nals involved in this expression, i.e., c or din. This is a level sensitive
behavior that causes ql to work as a transparent latch output.

As another example for the use of signal attributes, consider the
brief_t_flip_flop in Figure 6.43. This is the description of a toggle flip-
flop that toggles only when a positive pulse longer than 20 ns appears
on its t input. A conditional signal assignment assigns one of the two
possible values to the tmp signal, which is then assigned to the out-
put. The tmp signal, which stores the internal state of the flip-flop, is
assigned to the complement of itself when two conditions are TRUE.
The first condition is the falling edge of t (t=‘0’ AND t’EVENT), which
is the same as the condition in the example in Figure 6.41. The sec-
ond condition is TRUE if t, before this last fall, has been stable for 20
ns. The operation t’DELAYED evaluates to a signal that is delayed
from t by 0 ns, and therefore, it does not include the change that just
occurred on it. If this delayed signal has been stable for at least 20 ns,
we can conclude that the width of the positive pulse on t has been at
least 20 ns.

ENTITY brief_t_flip_flop IS
 PORT (t : IN BIT; q : OUT BIT);
END brief_t_flip_flop;
--
ARCHITECTURE toggle OF brief_t_flip_flop IS
 SIGNAL tmp : BIT;
BEGIN
 tmp <= NOT tmp WHEN (
 (t = ‘0’ AND t’EVENT) AND (t’DELAYED’STABLE(20 NS))
) ELSE tmp;
 q <= tmp AFTER 8 NS;
END toggle;

Figure 6.43 A Simple Toggle Flip-Flop Using Signal Attributes

Attributes ‘DRIVING and ‘DRIVING_VALUE are used for read-
ing driver specifications of signals. In a process statement, s ‘DRIV-
ING returns TRUE if signal s has at least one driver in that region.
Since an out port of a component cannot be read from within the
component, the ‘DRIVING_VALUE provides a convenient mechanism
for reading out port values. In an INOUT port, where multiple driv-
ers can exist for a port, the ‘DRIVING_VALUE reads the value given
to such a port in the process statement to which this attribute is be-
ing applied. As will be discussed in Chapter 7, reading a resolved sig-
nal with multiple drivers results in a value that is the resolution of
all its drivers. To read only the driver of such a signal, the ‘DRIV-
ING_VALUE attribute can be used.

VHDL Language Utilities and Packages 213

6.5.4 Entity Attributes
Entity attributes may be used to generate a string corresponding to
the name of signals, components, architectures, entities, or other
members of what is referred to as entity class in VHDL. The VHDL
language construct entity_class consists of entities, architectures, con-
figurations, procedures, functions, packages, types, subtypes, con-
stants, signals, variables, components, labels, literals, units, groups,
and files. In a design unit, in order to extract a string representing
any of these named entities, an entity attribute may be used.

Attributes ‘SIMPLE_NAME, ‘PATH_NAME and ‘IN-
STANCE_NAME provide hierarchical path information to named en-
tities. The simplest of these attributes is ‘SIMPLE_NAME and pro-
vides a string representing the simple name of the named entity. In
an architecture of an entity, the use of this attribute results in a
string representing the entity name.

The ‘PATH_NAME, when used in an architecture at a low level
of hierarchy, generates a string containing entity names and instan-
tiation labels from the top of hierarchy leading to the named entity
that the attribute is being applied to.

ENTITY multiplexer_n_tester IS END ENTITY;
--
ARCHITECTURE timed OF multiplexer_n_tester IS
 SIGNAL a : BIT_VECTOR(7 DOWNTO 0);
 SIGNAL s : BIT_VECTOR(2 DOWNTO 0);
 SIGNAL w1 : BIT;
 FOR UUT1: mux_n
 USE ENTITY components.multiplexer(customizable);
BEGIN
 UUT1: mux_n PORT MAP (a, s, w1);
 onehot_data (a, 123 NS, 9);
 consecutive_data (s, 79 NS, 11);
END ARCHITECTURE timed;

ENTITY multiplexer IS
 PORT (ins: IN BIT_VECTOR; s: IN BIT_VECTOR; w: OUT BIT);
END ENTITY multiplexer;
--
ARCHITECTURE customizable OF multiplexer IS BEGIN
 ASSERT FALSE
 REPORT customizable’SIMPLE_NAME SEVERITY NOTE;
 ASSERT FALSE
 REPORT customizable’PATH_NAME SEVERITY NOTE;
 ASSERT FALSE
 REPORT customizable’INSTANCE_NAME SEVERITY NOTE;

 w <= mux(ins, s);
END ARCHITECTURE customizable;

Figure 6.44 Applying Entity Attributes

214 Chapter 6

The string generated by the ‘INSTANCE_NAME, when applied
to a named entity, contains entity, architecture, and instantiation
labels leading to the design entity from the top of hierarchy in a hier-
archical design.

These attributes are especially useful when reporting certain
events on signals and/or components. A signal, for example, may be
unambiguously identified from inside of a component deep down in
hierarchy in a hierarchical design.
 Figure 6.44 shows a multiplexer description and its correspond-
ing testbench. This design was discussed in Chapter 5. In the code
shown in customizable architecture version of this chapter (Figure
6.44) we have added assert statements reporting ‘SIMPLE_NAME,
‘PATH_NAME, and ‘INSTANCE_NAME of the customizable entity
class.
 Figure 6.45 shows results produced by the ASSERT statements
of Figure 6.44. As shown, the ‘SIMPLE_NAME only produces the
name of the architecture. ‘PATH_NAME produce the name of the en-
tity that customizable is instantiated from and its instance name. The
‘INSTANCE_NAME attribute produces all entity, architecture, and
instance names from where architecture is instantiated leading to the
architecture itself.

--# ** Note: customizable

--# ** Note: :multiplexer_n_tester:uut1:

--# ** Note: :multiplexer_n_tester(timed)
 :uut1@multiplexer(customizable):

Figure 6.45 Entity Attribute Examples

6.5.5 User-Defined Attributes
In addition to the predefined attributes, VHDL allows definition and
use of user-defined attributes. Such attributes do not have simulation
semantics, so it is up to the user to define them and use them in ac-
cordance with the way they are defined.

User-defined attributes may be applied to the elements of an en-
tity class, as described in the previous section. Before an attribute can
be used, it has to be declared using an attribute declaration. An at-
tribute declaration identifies a name as an attribute with a given
type. For example, the following declaration declares sub_dir as an
attribute that can take values of STRING type:

ATTRIBUTE sub_dir : STRING;

VHDL Language Utilities and Packages 215

If the above declaration is made visible to a description, it can be as-
sociated with any of the elements of the entity class mentioned above,
i.e., entity, architecture, configuration, etc. For example, in order to
associate the sub_dir attribute with the multiplexer entity in Figure
6.44, this attribute specification must appear in the declarative part
of that entity:

ATTRIBUTE sub_dir OF multiplexer: ENTITY IS “/user/vhdl”;

The expression multiplexer’sub_dir, anywhere in an architecture of
the multiplexer entity, evaluates to “/user/vhdl”.
 Figure 6.46 shows delay and sub_dir attribute definitions. The
type of the delay attribute is timing that is also defined in this figure.
The sub_dir attribute has a STRING type. Using the util-
ity_attributes package makes these attributes visible to designs.

PACKAGE utility_attributes IS
 TYPE timing IS RECORD
 rise, fall : TIME;
 END RECORD;
 ATTRIBUTE delay : timing;
 ATTRIBUTE sub_dir : STRING;
END utility_attributes;

Figure 6.46 Attribute Definitions

 The entity declaration of multiplexer shown in Figure 6.47 uses
the attributes of the utility_attributes package. In the declarative part
of this entity, the attributes are associated with the entity itself and
with the output of this entity. In the statement part of the customiza-
ble architecture of the multiplexer entity, the rise and fall fields of the
delay attribute of the w output are used in calculating the delay val-
ues on this output.

An attribute specification for associating a user-defined attribute
with an entity class can appear in any declarative part in which the
attribute and the entity it is being applied to are visible. For example,
in Figure 6.47, the attribute specification that associates delay with
the w output could appear in the declarative part of the customizable
architecture. In the same example, it is also worthwhile noting that if
the delay attribute is to be applied to other signals, those signals
should be listed along with w, separated by commas. If an attribute is
to be applied to all visible signals, the keyword ALL can replace the
list of individual signals. The keyword OTHERS can also be used to
apply the attribute to all entity classes that have not been specified
above it.

216 Chapter 6

Values of user-defined attributes can be used in expressions or
on the right-hand side of assignments, but no assignments can be
made to them.

USE WORK.utility_attributes.ALL;

ENTITY multiplexer IS
 PORT (ins: IN BIT_VECTOR; s: IN BIT_VECTOR; w: OUT BIT);
 ATTRIBUTE sub_dir OF multiplexer : ENTITY
 IS "/user/vhdl";
 ATTRIBUTE delay OF w : SIGNAL IS (8 NS, 10 NS);
END ENTITY multiplexer;
--
ARCHITECTURE customizable OF multiplexer IS BEGIN
 w <= ‘1’ AFTER w’delay.rise WHEN mux(ins, s) = ‘1’ ELSE
 ‘0’ AFTER w’delay.fall;
END ARCHITECTURE customizable;

Figure 6.47 Using Attributes

6.6 Standard Libraries and Packages
Adaptation of the VHDL language to new technologies and new de-
sign methodologies is done via its libraries and packages. With the
original definition of the language the STD library that included the
STANDARD and TEXTIO packages were defined. Later on, the IEEE
library was defined that included new types and utilities based on the
industry standard std_logic type. Contents of these packages and
their utilization are described here. The complete packages of the im-
portant libraries are included in the CD that accompanies this book,
and declarations of key IEEE packages are included in appendices in
this book. This section gives a brief overview of package contents and
shows examples where needed.

6.6.1 STANDARD Package
The STANDARD package is in the STD library. This package in an
internal language package and its body does not exist as a VHDL
code. Basic types such as BIT, BIT_VECTOR, INTEGER, and other
types discussed thus far in this book are included in the STANDARD
package.
 VHDL logical, relational, and arithmetic operations are over
loaded for basic types of this package. For example the AND logical
operation is defined for BIT and BIT_VECTOR so that two BIT type
operands or two BIT_VECTOR operands of the same size can be
ANDed.

VHDL Language Utilities and Packages 217

 While arithmetic operations are defined for INTEGER and
REAL types, this package does not overload these operations for the
BIT and BOOLEAN types. If needed, users can develop their own bi-
nary arithmetic functions. The standard numeric package (IEEE
1076.3) is the NUMERIC_BIT package that contains overloading of
arithmetic operations for the BIT and BIT_VECTOR types.

6.6.2 TEXTIO Package and ASCII I/O
Basic unformatted input-output to external files was described earlier
in this chapter. The methods described used primitive VHDL file op-
erations and can be used with any data type. VHDL also supports a
TEXTIO package which includes types and procedures for ASCII line-
oriented input or output. This package is in the STD library and is
shown in an appendix in this book.
 The TEXTIO package defines the LINE type as a pointer to
STRING, which is used for all text file readings and writings. The file
type provided by this package is TEXT, and it defines files of ASCII
strings. Procedures defined in this package for handling input-output
are READ, READLINE, WRITE, and WRITELINE. In addition, func-
tion ENDFILE provides a mechanism for checking the status of a file.
These subprograms can be used only if a TEXT type file is declared
and opened using language utilities described in Section 6.1.6.
 For reference, file declarations, file open, and file close state-
ments are shown here for an example TEXT file. The following
statements are alternatives for opening file f of type TEXT.

FILE f: TEXT;
 FILE f: TEXT IS “input.txt”;
 FILE f: TEXT OPEN READ_MODE IS “input.txt”;

If a file is declared using the first declaration alternative, it must be
opened before it can be read from or written into. The following pro-
cedure calls open file f in three possible read, write, and append
modes:

FILE_OPEN (f, “input.txt”, READ_MODE);
 FILE_OPEN (f, “output.txt”, WRITE_MODE);
 FILE_OPEN (f, “output.txt”, APPEND_MODE);

The procedure call shown below closes file f after it has been opened
for read and write operations:

FILE_CLOSE (f);

218 Chapter 6

The READLINE (f, l) procedure reads a line of file f and places it in
buffer l of type LINE. The READ (l, v, …) reads a value v of its type
form l. The WRITE (l, v, …) writes the value v to LINE l and
WRIELINE (f, l) writes l to file f. Function ENDFILE (f) returns
TRUE if the end of file f is reached.
 READ and WRITE procedures are valid for values of types BIT,
BIT_VECTOR, BOOLEAN, CHARACTER, INTEGER, REAL,
STRING, and TIME. Other parameters of these procedures include
orientation, size, and unit if v is of type TIME.
 For reading from a file, after READLINE reads a line, data can
be extracted from the line (or buffer) using READ. This can continue
until the entire buffer is consumed. For writing to a file, a LINE type
variable is filled with data using WRITE, and the line is written to
the file using WRITELINE.

6.6.2.1 TEXTIO Reading. Figure 6.48 shows a procedure that uses
the TEXTIO package for reading standard type data from a file. The
GetData procedure takes a target signal, s, and a file input as its ar-
guments. Data read from file input f will be scheduled on s. The file
input is a declared file that has been opened outside of the procedure.
As shown, the type of this file is TEXT that is defined in the TEXTIO
package.

The declarative part of GetData declares lbuf of the predefined
LINE type. This variable is used to read a line from file f. In the body
of GetData, a line is read from f using READLINE. Following this,
two invocations to the READ procedure read time and data. Type of t
is TIME and type of d is BIT_VECTOR. Data extracted from lbuf are
according to argument type of the READ procedure thus, time is read
into t and BIT values are read into d. Data extracted into d are
scheduled into the target s signal.

PROCEDURE GetData
 (SIGNAL s : OUT BIT_VECTOR; FILE f : TEXT)
IS
 VARIABLE lbuf : LINE;
 VARIABLE t : TIME;
 VARIABLE d : BIT_VECTOR (s’RANGE);
BEGIN
 WHILE NOT ENDFILE (f) LOOP
 READLINE (f, lbuf);
 READ (lbuf, t);
 READ (lbuf, d);
 s <= TRANSPORT d AFTER t;
 END LOOP;
 FILE_CLOSE (f);
END PROCEDURE GetData;

Figure 6.48 Reading a TEXTIO File

VHDL Language Utilities and Packages 219

Figure 6.49 shows a sample input file illustrating the format of
data expected by the GetData procedure. Time and its unit come first
in each line, followed by a white-space and then followed by eight BIT
type values.

 0 ns 00111000
 10 ns 00101111
 35 ns 10110000
 45 ns 11101010
 50 ns 01100001
 55 ns 00101110
 95 ns 11100011
110 ns 00011100

Figure 6.49 Sample Data File

6.6.2.2 TEXTIO Writing. We show a testbench for testing an 8-bit 2-
TO-1 multiplexer for demonstrating TEXTIO writing. Figure 6.50
shows a complete text input and output testbench for our multi-
plexer8 entity. The multiplexer has two 8-bit inputs and one is se-
lected for the w1 output.

USE STD.TEXTIO.ALL;

ENTITY multiplexer8_tester IS END ENTITY;
--
ARCHITECTURE timed OF multiplexer8_tester IS
 SIGNAL a, b, w1 : BIT_VECTOR (7 DOWNTO 0);
 SIGNAL s : BIT := ‘0’;
 FILE Ain : TEXT OPEN READ_MODE IS "Ain.dat";
 FILE Bin : TEXT OPEN READ_MODE IS "Bin.dat";
BEGIN

 UUT1: ENTITY WORK.multiplexer8 (conditional)
 PORT MAP (a, b, s, w1);
 PROCESS (w1)
 FILE Wout : TEXT OPEN WRITE_MODE IS "Wout.dat";
 VARIABLE lbuf : LINE;
 BEGIN
 WRITE (lbuf, NOW, RIGHT, 8, NS);
 WRITE (lbuf, w1, RIGHT, 9);
 WRITELINE (Wout, lbuf);
 END PROCESS;

 GetData (a, Ain);
 GetData (b, Bin);
 s <= NOT s AFTER 25 NS WHEN NOW <= 140 NS ELSE ‘0’;
END ARCHITECTURE timed;

Figure 6.50 Using Text Data for Input and Output

220 Chapter 6

 The testbench shown uses the STD.TEXTIO utilities as illus-
trated by the first line in Figure 6.50. The declarative part of the mul-
tiplexer8_tester declares Ain and Bin logical files of type TEXT and
associates these logic files with Ain.dat and Bin.dat physical files.
Using two invocations of GetData of Figure 6.48, data from Ain and
Bin are read and scheduled into a and b, respectively.
 Writing of multiplexer result is done by the PROCESS statement
shown in the architecture body of our testbench. This process is sensi-
tive to the multiplexer output, w1. The Wout logical file of TEXT type
is declared, opened, and associated with the Wout.dat physical file.
Since this file statement appears in the declarative part of a process
statement, it is executed only once at the beginning of the simulation.
Subsequent writings are done to the end of the file.
 For writing into Wout, two WRITE statements write to lbuf, and
WRITELINE writes lbuf to Wout. The first WRITE writes the current
time (NOW). The time is written using an 8 character field, right jus-
tified, and uses the NS time unit. A nine character field in dedicated
to the w1 output, allowing a white-space and eight BIT type data. The
format of the data written into Wout is the same as input files illus-
trated in Figure 6.49.

6.6.2.3 Std_logic TEXTIO. The std_logic package provides utilities
for the standard nine-value logic. For TEXTIO in this type, the
std_logic_TEXTIO package is introduced. This package is in the
IEEE library and is used in conjunction with the standard TEXTIO
package. The std_logic_TEXTIO adds std_logic read and write func-
tions to the existing ones in TEXTIO.
 In order to be able to read and write in std_logic, the library and
package use statements shown in Figure 6.51 must be included in a
corresponding design file. With the inclusion of what is shown here,
READ and WRITE procedures work for std_logic types as well as for
those of the standard package.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE STD.TEXTIO.ALL;
USE IEEE.std_logic_TEXTIO.ALL;

Figure 6.51 std_logic TEXTIO Package

6.6.3 Std_logic_1164 Package
The standard std_logic_1164 package is in the IEEE library and de-
fines types and utilities for the standard industry standard nine-
value logic system. We have been using the v4l type in this chapter to

VHDL Language Utilities and Packages 221

illustrate what is needed in a package for definition and utilization of
a logic value system. Utilities in std_logic_1164 package are similar
to those we explained in VerilogLogic except that those of the former
are more extensive and more complete.

6.6.3.1 Type Definition. The std_logic_1164 defines std_ulogic and
std_logic types. The std_logic is the resolved version of std_ulogic and
will be explained in the next chapter. These types are enumeration
types and have nine values as shown in Figure 6.52.

TYPE std_ulogic IS ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't care
);

Figure 6.52 Std_logic Enumeration Values

 In addition, vector versions of these types are also defined as un-
constrained arrays. These types are std_logic_vector and
std_ulogic_vector.
 Common subsets of std_ulogic for various logic systems are also
defined and shown in Figure 6.53. As discussed in relation to subsets,
objects declared as subset of a type are fully compatible with these of
the base type.

SUBTYPE X01 IS resolved std_ulogic
 RANGE 'X' TO '1'; -- ('X','0','1')
SUBTYPE X01Z IS resolved std_ulogic
 RANGE 'X' TO 'Z'; -- ('X','0','1','Z')
SUBTYPE UX01 IS resolved std_ulogic
 RANGE 'U' TO '1'; -- ('U','X','0','1')
SUBTYPE UX01Z IS resolved std_ulogic
 RANGE 'U' TO 'Z'; -- ('U','X','0','1','Z')

Figure 6.53 Subtypes of the std_logic Type

6.6.3.2 Overloaded Logical Operators. The standard logic package
contains overloaded logic operators for “AND”, “NAND”, “OR”, “NOR”,
“XOR”, “XNOR” and “NOT” operators. These operators are overloaded
for std_ulogic, and because std_logic is considered a subtype of
std_ulogic, they also work for the std_logic type.

222 Chapter 6

 In addition, the standard logical operators named above, are
overloaded for std_logic_vector and std_ulogic_vector and combina-
tions of the two arrays. With these overloadings, a designer can sim-
ply use std_logic instead of BIT to take advantage of this nine-value
system.

6.6.3.3 Conversion Functions. The std_logic_1164 package contains
functions for conversions to and from BIT and std_logic and its sub-
sets. For example To_StdLogicVector converts BIT_VECTOR or
std_ulogic_vector to std_logic_vector. Another example is function
TO_X01 that converts BIT, std_logic, std_ulogic and their vectorized
versions to X01 and std_logic_vector.

6.6.3.4 Edge Detection. Edge detection functions rising_edge and
falling_edge are included in the standard logic package. These func-
tions are recognized by most synthesis tools for flip-flop clock edge
detection.

6.6.4 Std_logic_arith Package
The IEEE standard arithmetic package is an important package that
eases the use of the VHDL language for arithmetic and logical func-
tions, in spite of the language’s complex typing system.
 The std_logic_arith defines SIGNED and UNSIGNED uncon-
strained arrays of std_logic. It then overloads all arithmetic and rela-
tional operators of VHDL, 1) for SIGNED, INTEGER, and NATURAL
types, and 2) for UNSIGNED, INTEGER, and NATURAL. With this
overloading, we can use “+” for adding a signed or an unsigned
std_logic_vector with an integer. Similarly we can mix a signed or un-
signed vector with an integer in relational operations, i.e., “>”, “<”,
“<=”, “>=”, “=”, and “\”.

6.6.4.1 The UNSIGNED Package. The use of std_logic_arith re-
quires specification of all objects as SIGNED or UNSIGNED. Once an
object is declared as either of these types, conversion to the other and
conversion to std_logic becomes difficult. The std_logic_unsigned
package sits on top of the std_logic_arith package, it assumes all
std_logic_vector declarations are unsigned and overloads all arithme-
tic and relational operators for unsigned numbers declared as
std_logic_vector. The unsigned package already includes the arithme-
tic package. To use all unsigned arithmetic on the std_logic_vector
types, library and package use clauses shown in Figure 6.54 must be
used.

VHDL Language Utilities and Packages 223

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_UNSIGNED.ALL;

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_SIGNED.ALL;

Figure 6.54 Using Unsigned and Signed

6.6.4.2 The SIGNED Package. The std_logic_signed package sits on
top of the std_logic_arith package and forces all logical and relational
operators to treat their operands as signed 2’s complement numbers.
The type mark recognized in this package is std_logic_vector that is
treated as a signed type. Figure 6.54 shows library and use state-
ments for utilizing utilities of the std_logic_SIGNED package.
 If a design requires both signed and unsigned arithmetic, the
std_logic_arith or NUMERIC_STD must be used. SIGNED and UN-
SIGNED packages only allow signed or unsigned arithmetic.
 Other packages include MATH_REAL, MATH_COMPLEX, and
other fixed and floating point packages. Standard packages and some
of the proposed ones appear in the CD that accompanies this book.

6.7 Summary
This chapter focused on linguistics aspects of VHDL and discussed
types, operators, overloading, and related matters. Details of type
definitions, overloading and attributes were discussed. At the same
time we used a simple type definition to illustrate concepts discussed.
The last section introduced standard libraries that define standard
types and operators. Use of libraries and standard packages simpli-
fies the use of VHDL for design or description of hardware based on
standard technologies. A lot of times, use of packages eliminates the
need for understanding many of difficult language constructs. How-
ever, for a better understanding of the languages and with a look into
future technologies, the issues discussed in the earlier part of chapter
become important.

Problems
6.1 Using concurrent statements, write a VHDL code that sets an
error signal (error) to ERROR if the period of an incoming clock signal

224 Chapter 6

ever drops below 1 US. At all other times the error signal value stays
at GOOD. Declare necessary types.

6.2 A) Write a T flip-flop description with a clock (clk) and a t input.
Toggling is done on the rising edge of clk when t is ‘1’. Include a ge-
neric parameter for the flip-flop delay, one for the minimum pulse
width on t, and one for the flip-flop identification number. Each flip-
flop should be able to report an error message (use assertion state-
ments) if a glitch of less than the specified parameter is detected on
its t input. The message should include the flip-flop identification
number (use ‘IMAGE to convert integer to string). B) Write a gener-
ate statement for generating an unconstrained counter using T flip-
flops of Part A. Do not specify binding, generate a unique identifica-
tion number for each flip-flop. C) Write a configuration declaration
for binding the counter to its flip-flops and specifying its generic val-
ues.

6.3 VHDL attributes are applied to generate waveforms on seven
signals. Show values that appear on these signals considering all
delta delays.

PACKAGE types_and_values IS
 TYPE four IS ('0', b, c, '1');
 CONSTANT d1 : TIME := 100 US;
 CONSTANT d2 : TIME := 050 US;
END types_and_values;
--
USE WORK.types_and_values.ALL;
--
ENTITY type_test IS END ENTITY;
--
ARCHITECTURE attributes OF type_test IS
 SIGNAL a1, a2, a3, a4, a5, a6, a7 : four;
BEGIN
 a1 <= four'RIGHTOF(a1) AFTER d1 WHEN a1 /= four'RIGHT
 ELSE '0' AFTER d1;
 a2 <= a1'DELAYED(d2);
 a3 <= a1 AFTER d2;
 a4 <= '1' WHEN a2 = a3 ELSE '0';
 a5 <= '1' WHEN a1'STABLE ELSE '0';
 a6 <= '1' WHEN NOT a1'EVENT ELSE '0';
 a7 <= '1' WHEN a5'QUIET = a6'QUIET ELSE '0';
END attributes;

6.4 A signal is to be passed to a procedure. The procedure is to
count all transactions that have occurred on the signal from time 0 to
the time of calling of the procedure. The procedure returns this IN-

VHDL Language Utilities and Packages 225

TEGER count via its second argument. Write the procedure using sig
for input signal and cnt for output transaction count. The procedure
may be called from a sequential body such as a process statement.

6.5 Is the statement shown in the statement part of the architecture
shown below a valid VHDL statement? Does this architecture simu-
late as it is shown here? If not, write a function so that when used by
the description shown here, the signal assignment in this description
becomes a valid simulatable VHDL statement. What you write the
function to do is not important; just write a valid function to return
any thing that makes the statement simulatable.

ENTITY WhatIsThis IS
 --FUNCTION ???
 . . .
 --END ???
END WhatIsThis;
--
ARCHITECTURE behavioral OF WhatIsThis IS
 SIGNAL a, b, c, d : INTEGER := 0;
BEGIN
 a <= (b <= c) <= d;
END behavioral;

6.6 Write a VHDL architecture with an enable input and 3 data in-
puts a, b, and c. When enable becomes ‘1’, events on a, b, and c are
counted and will be reported to the output when enable becomes 0.
The output is a 4-bit binary number that can only keep modulo-16
counts of the input events. Consider simultaneous events on the in-
puts.

Suggested Reading
Baker, Louis, VHDL Programming: With Advanced Topics, 1992,

Wiley Professional Computing, John Wiley & Sons Inc, ISBN: 978-
0792390305.

Barnes, John, Programming in Ada 2005, 2006, Addison Wesley,
ISBN: 0321340787.

Bhasker, Jayaram, A VHDL Primer, 3rd edition, 1998, Prentice Hall
PTR, ISBN: 978-0130965752.

Burns, Alan, Andy Wellings, and John Barns, Concurrency in Ada,
2nd edition, 1998, Cambridge University Press, ISBN: 052162911X.

Chu, Pong, RTL Hardware Design Using VHDL: Coding for Effi-
ciency, Portability, and Scalability, 2006, Wiley-IEEE Press,
ISBN: 0471720925.

226 Chapter 6

Cohen, Norman, Ada As A Second Language, 2nd edition, 1995,
McGraw-Hill Science/Engineering/Math, ISBN: 0070116075.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference
Manual, SH94983-TBR (print) SS94983-TBR (electronic), ISBN 0-
7381-3247-0 (print) 0-7381-3248-9 (electronic), 2002.

IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer
Level (RTL) Synthesis, SH95242 (print) SS95242 (electronic),
ISBN 0-7381-4064-3 (print) 0-7381-4065-1 (electronic), 2004.

Lipsett, Roger, and Cary Ussery, VHDL Hardware Description and
Design, 1st edition, 2001, Springer, ISBN: 978-0792390305.

Perry, Douglas L., VHDL: Programming by Example, 4th edition,
2002, McGraw-Hill Professional, ISBN: 978-0071400701.

227

7VHDL Signal Model

The previous chapters focused on the use of VHDL in design and dis-
cussed most of its constructs. The syntax and semantics of most lan-
guage constructs have been discussed up to this point in the book.
 The focus of this chapter is on the VHDL simulation model; we
discuss how VHDL deals with timing and concurrency which are the
two most important factors that distinguish a hardware language
from a software one. The first part of the chapter deals with the
VHDL delay modeling. In this part we discuss how multiple sequen-
tial values interact when placed on the driver of a signal. The second
part of the chapter deals with concurrency modeling. This part shows
how multiple concurrent drivers of a signal interact to generate a
value for the signal. Together, multiple sequential values into a
driver and multiple drivers for a signal, provide a complete signal
model that models most properties of actual hardware signals.

7.1 Characterizing Hardware Languages
Timing and concurrency are the main characteristic of an HDL.
These features are instrumental in the correct description of hard-
ware components at various levels of abstraction.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

228 Chapter 7

7.1.1 Timing and Concurrency of Operations
We use a small example to illustrate how timing and concurrency of
operations help correct modeling of hardware. The example is a 2-to-1
multiplexer shown in Figure 7.1. Depending on the value of s, input a
or b is selected to appear on w.
 In the circuit shown, numbers inside gates represent delay val-
ues of these gates in nanoseconds. We will examine this circuit for the
situation shown in this figure in which s changes from ‘1’ to ‘0’ at time
t0. As shown in the timing diagram, because of time delay differences
in the two paths from s to w, 8 ns after the change on s, a 4 ns glitch
appears on w. Timing and concurrency of operations in VHDL allow
VHDL model for this circuit to simulate exactly as shown in Figure
7.1.

Figure 7.1 Illustrating Timing and Concurrency

7.1.1.1 Sequential Modeling. Figure 7.2 shows a sequence of four
statements for modeling the multiplexer of Figure 7.1. The sequen-
tiality in execution of these statements is the way a software lan-
guage operators. Evaluating these statements at time tb and ta, before
and after s changes, results in correct values for w at these times.
However the model of Figure 7.2 cannot properly model the 8 ns delay
and the 4 ns glitch that appears on s starting at time t0+8.

i := NOT s;
j := a AND i;
K := s AND b;
W := j OR k;

Figure 7.2 Modeling a Multiplexer with Sequential Statements

VHDL Signal Model 229

7.1.1.2 Concurrent Modeling. Unlike the sequential model dis-
cussed above, modeling the circuit of Figure 7.1 with the statements
that contain timing and execute concurrently can generate the de-
signed timing of Figure 7.1. The VHDL model of the multiplexer is
shown in Figure 7.3.

ENTITY mux IS
 PORT (a, b, s : IN BIT; w : OUT BIT);
END ENTITY;
--
ARCHITECTURE concurrent of mux IS
 SIGNAL i, j, k : BIT;
BEGIN
 i <= NOT s AFTER 4 NS;
 j <= a AND i AFTER 5 NS;
 k <= b AND s AFTER 5 NS;
 w <= j OR k AFTER 3 NS;
END ARCHITECTURE concurrent;

Figure 7.3 Modeling a Multiplexer with Concurrent Statements

Unlike the statements in Figure 7.2, these in Figure 7.3 do not
execute in the order that they appear. Statements in Figure 7.3 are
sensitive to their right hand sides and when an event occurs on a sig-
nal on the right hand side of a statement, e.g., s changes from ‘1’ to
‘0’, the corresponding statement executes and schedules a value to its
left hand side signal. A scheduled value on a signal becomes the value
of the signal when its time arrives. For example, due to the change in
s at t0 a ‘1’ will be scheduled for i to occur at t0 + 4 ns.

Figure 7.4 Timing of Signals of Concurrent Description of Figure 7.3

230 Chapter 7

The sequence of events and values scheduled for various signals
of Figure 7.3 are shown in Figure 7.4. When k changes at t0+5 ns, the
right hand side of w sees a change causing a ‘0’ to be scheduled for
this signal 3 ns later. At time t0+9 ns, j changes that causes another
scheduling on w. The scheduling on w cause the 4 ns glitch to appear
on w as the result of the execution of concurrent assignments of
Figure 7.3.

Evaluation of the sequential and concurrent models of circuit of
Figure 7.1 illustrate that concurrency and timing are needed for
proper modeling of hardware constructs. In the sections that follow
we discuss semantics of VHDL statements and concurrency in this
language that make behaviors such as that of Figure 7.4 to happen.

7.2 Signal Assignments
Assignment of values to signals in sequential and concurrent bodies
is an important issue in VHDL. Concepts related to delay modeling
will be discussed in this section. Section 7.3 continues this topic as it
relates to concurrency. Issues related to multiple concurrent assign-
ments to the same signal are covered in Section 7.4.

In its simplest form, a signal assignment consists of a target sig-
nal on the left hand side of a left arrow and an expression for defining
a waveform on the right hand side (with no AFTER clause). Such an
assignment specifies that the right hand side be assigned to the left
hand side a delta time later. Physically this time is 0 s, but it has
nonzero scheduling significance. For example, an assignment that is
scheduled to occur two delta times later will be done after an assign-
ment that is scheduled to occur after one delta, and the result of the
later assignment will not be available for the earlier assignment.
Both assignments, however, occur before the smallest physical time
unit. This will become clearer when we discuss concurrency in Section
7.3.

Optionally, a signal assignment can include an AFTER clause
specifying that a physical time delay is to occur before the assignment
to the left hand takes place. If this time delay is zero, the simple form
described above will apply.

Signal assignments can have inertial or transport delays. Inertial
delays can have an additional reject specification. The way delays are
handled in signal assignments is referred to as delay modeling. The
delay mechanism for a signal assignment may be specified on the
right hand side of the assignment. The default mechanism is inertial.
Transport delay mechanism must be explicitly specified.

The delay architecture of the example entity in Figure 7.5 in-
cludes assignments with inertial, inertial with reject, and transport

VHDL Signal Model 231

mechanisms. This architecture also includes an assignment for creat-
ing a reference signal, waveform. The waveform on waveform consists
of positive and negative pulses of 5 ns, 4 ns, 3 ns, and 2 ns that are
distanced by 6 ns inactive periods.

In the first assignment, the INERTIAL keyword is optional. The
second assignment specifies a reject value for an inertial delay
mechanism. In this assignment, both REJECT and INERTIAL key-
words are mandatory. The third assignment has a transport delay
mechanism.

ENTITY example IS END ENTITY;
--
ARCHITECTURE delay OF example IS
 SIGNAL waveform : BIT;
 SIGNAL target1, target2, target3 : BIT;

BEGIN
 -- Inertial delay
 target1 <= waveform AFTER 5 NS;

 -- Inertial with reject
 target2 <= REJECT 3 NS INERTIAL waveform AFTER 5 NS;

 -- Illustrating transport delay
 target3 <= TRANSPORT waveform AFTER 5 NS;

 -- Creating waveform (not shown)
 waveform <= -- P5, N6, P4, N6, P3, N6, P2, P6,
 -- N5, P6, N4, P6, N3, P6, N2, N6;

END delay;

Figure 7.5 VHDL Description for the Demonstration of Delay Mechanisms

7.2.1 Inertial Delay Mechanism
Inertial delays can be used to model capacitive networks, such as the
one shown in Figure 7.6, which corresponds to the first assignment of
Figure 7.5. If a pulse whose width is less than 5 ns occurs on wave-
form, it will be rejected and does not appear on target1. A pulse of
exactly 5 ns will not be rejected.

Figure 7.6 The RC Delay is Best Represented by an Inertial Delay Mechanism

232 Chapter 7

Delays through capacitive networks and through gates with
threshold values can be more accurately modeled with an inertial de-
lay mechanism and a pulse rejection value that is less than the value
of the inertial delay. The second assignment of Figure 7.5 is an iner-
tially delayed signal assignment with a reject value of 3 ns. As long as
pulses on the right hand side waveform signal are larger than 3 ns,
they appear on target2 with 5-ns delay. A pulse that is less than, or
equal to, 3 ns will not appear on target2.

7.2.2 Transport Delay Mechanism
Delays through transmission lines and networks with virtually infi-
nite frequency response can be modeled by the transport delay
mechanism. Regardless of the width of a pulse, a signal assignment
with a transport delay mechanism delays the right hand side signal
by the specified transport delay value. The third assignment of Figure
7.5 causes target3 to be a 5-ns-delayed duplicate of waveform.

7.2.3 Comparing Inertial and Transport
For observing the differences between the three delay mechanisms,
Figure 7.5 generates a waveform on its waveform signal that has
pulses of different durations. On the right hand side of the waveform
signal, a waveform consisting of four positive and four negative
pulses of 5, 4, 3, and 2 ns are produced. Positive pulses are separated
by 6-ns negative pulses, and negative pulses are separated by 6-ns
positive pulses. The first line in Figure 7.7 shows the waveform pro-
duced on waveform.

The same waveform signal appears on the right hand side of
three signal assignments to target1, target2, and target3 signals. De-
lay values for these three assignments are 5 ns. Assignments to tar-
get1 and target2 are inertial, while assignment to target3 is of the
transport mechanism. Assignment to target2 specifies a reject value
of 3 ns.

As shown in Figure 7.7, positive or negative pulses of 5 ns or
more appear on all three targets. A 4-ns pulse (positive or negative)
appears on target2 because it is larger than the reject value of this
assignment, and it appears on target3 because of the transport
mechanism. The two 4-ns pulses on waveform are rejected by the in-
ertially delayed assignment to target1. Figure 7.7 also shows that
pulses that are less than 3 ns only appear on target3, which has a
transport delay mechanism on its right hand side.

VHDL Signal Model 233

Figure 7.7 Illustrating Differences between Delay Mechanisms in VHDL

Figure 7.7 shows that the difference between target1 and target2
is only when a 4 ns pulse (larger than reject and smaller than inertial
delay) appears on waveform. Differences between left hand side tar-
get1 and target3 signals occur when pulses less than the inertial de-
lay value of 5 ns appear on waveform.

The effect of a delay mechanism can be produced by using other
mechanisms. For example, an inertial delay with a delay value d and
a reject value of 0 ns is equivalent to a transport delay with delay d.
Other forms of pulse delay and/or pulse rejection can be generated by
Boolean combination of signals with different delay formats.

7.3 Concurrent and Sequential Assignments
Basic concepts of concurrency and VHDL bodies for sequential and
concurrent statements have been discussed earlier in this book as
well as in Section 7.1. This section discusses assignments to signals
in sequential and concurrent bodies. This discussion explains the lan-
guage mechanisms that make it implement various delay mecha-
nisms as discussed in the previous section.

7.3.1 Concurrent Assignments
In an architectural body, all signal assignments are concurrent.
When the value of a signal on the right hand side of an assignment
changes, the entire right hand side waveform is evaluated, and the
result is assigned to the left hand side target. For example, in Figure
7.5 if the value of waveform changes, the new value will be scheduled
for assignment to target1 after 5 ns. From time 0 to 85 ns, waveform
changes between ‘1’ and ‘0’ a total of 18 times. Because this signal
appears on the right hand sides of target1, target2 and target3 sig-

234 Chapter 7

nals, each of these signal assignments becomes active 18 times in the
0 to 85 ns time interval.

As a result of the execution of a concurrent signal assignment, a
value will be scheduled for the left hand side signal. When this hap-
pens, it is said that a value is placed on the driver of the left hand
side signal.

Multiple concurrent assignments to a signal produce multiple
drivers for that signal. A signal can only have multiple drivers if,
along with the declaration of the signal, the name of a function for
resolving a single value from multiple driving values is specified. In
this text, resolution functions, multiple driving values of a signal, and
the single resolved signal value are represented as shown in Figure
7.8. Signals with the declaration of which a resolution function is
specified are said to be resolved signals. These signals, resolution
functions, and issues regarding connection and disconnection of sig-
nal drivers will be discussed in Section 7.4.

Figure 7.8 Resolving a Single Value from Multiple Driving Values

A sequential body of VHDL that contains multiple assignments
to a certain signal can only produce a single driver for that signal. All
such signal assignments affect the same driver. Assignments to a sig-
nal in multiple sequential bodies are considered concurrent, and each
produces a driver for that signal. In this case a resolution function is
required for the signal.

7.3.2 Events and Transactions
Events and transactions are often referenced when discussing signal
assignments. When a waveform causes the value of the target signal
to change, an event is said to have occurred on the target signal.
When a value is scheduled to be assigned to a target signal after a
given time, a transaction is said to have been placed on the driver of
the target signal. A transaction that does not change the value of a
signal is still a transaction, but it does not cause an event on the sig-
nal. A transaction is represented by a value-time pair in parentheses.

VHDL Signal Model 235

The value is the current value if the time element is zero; otherwise,
the value is the future value for the driver of the signal.

Execution of a signal assignment (sequential or concurrent)
causes value v calculated from the right hand side and the delay d
specified with the signal assignment to be placed on the driver of the
left hand side signal as a (v, d) transaction. As shown in Figure 7.9,
when placement of this transaction (tr1) takes place at time t, during
the current simulation time (now), the initial time component of the
transaction becomes d. At a later time when the now time changes to
t+t0, the time component of the tr1 transaction becomes d-t0. As simu-
lation progresses, the time component of this transaction approaches
0. When now becomes t+d, the time component of the tr1 transaction
reaches 0, and the transaction is said to be expired.

Figure 7.9 A Transaction, from Creation to Expiration

As an example, consider the description in Figure 7.10. The dec-
laration of signals a, b, and c causes the creation of these signals with
‘0’ initial values. The initial value of each of these signals appears as
though it has been the value of the signal for an infinitely long time
prior to the start of simulation. Creation of the signals is referred to
as elaboration, and assigning their initial values to them is called ini-
tialization.

236 Chapter 7

ARCHITECTURE demo OF example IS
 SIGNAL a, b, c : BIT := ‘0’;
BEGIN
 a <= ‘1’ AFTER 15 NS;
 b <= NOT a AFTER 5 NS;
 c <= a AFTER 10 NS;
END demo;

Figure 7.10 A Simple Description for Illustrating Events and Transactions

After the initialization phase, values of a, b, and c signals are all
zero. At the start of the simulation, at time 0 (this and other time
values in the discussion of this example are in nanoseconds), the
value of ‘0’ on a causes a (‘1’, 5 ns) transaction to be scheduled for b,
and a (‘0’, 10 ns) transaction for c. Also at this time, a ‘1’ is scheduled
for the a signal after 15 ns, causing a (‘1’, 15 ns) transaction on the
driver of this signal. At time 5, the time element of the scheduled
transaction for b becomes zero, and its value becomes current (trans-
action expires), which causes the value of this signal to change from
‘0’ to ‘1’. This change of value is an event on b. Five nanoseconds
later, at time 10, the scheduled transaction on c becomes current (its
time element becomes zero), causing a driving value of ‘0’ on this sig-
nal. Since at this time the value of c is already ‘0’, this transaction
does not cause an event on c.

Figure 7.11 shows events and transactions on signals in the de-
scription in Figure 7.10. Hollow rectangles on waveforms signify
transactions, and black rectangles signify initial values. Those trans-
actions with a transition inside are considered events, e.g., b at 5 ns.
Figure 7.11a shows the resulting timing diagram, with rectangles the
transactions when they become current. Figure 7.11b shows the
transactions that are placed on the a, b and c signals at the time this
placement takes place. Figure 7.11c shows the transactions that exist
on the signals before they become current. When a transaction is
placed on the driver of a signal, it stays there and its time value de-
crease linearly with time until it becomes current. Figure 7.11c only
shows transactions at 5 ns intervals. A transaction is represented by
a circle; the size of the circle signifies the value of the time element of
the transaction. Finally Figure 7.11d shows all transactions from
when they come to exist to when they expire.

VHDL Signal Model 237

Figure 7.11 Events and Transactions that Occur on Signals in Figure 7.10. (a) The
Resulting Timing Diagram Showing Transactions when they become Current; (b)
Transactions when they are Placed on Signals; (c) Transactions as their Time Val-
ues Approach Zero to Become Current; (d) Transactions from Creation to Expiration

238 Chapter 7

No new transactions are placed on the signals in Figure 7.10 un-
til time 15. At this time the transaction that was placed on the drive
of a at time 0 becomes current and changes the value of this signal to
‘1’. This event causes a (‘0’, 5 ns) transaction on b and a (‘1’, 10 ns)
transaction on c. When these transactions become current (i.e., their
time elements become 0 at time 15+5 ns and 15+10 ns, respectively),
the values of b and c are the opposite of the values of their corre-
sponding transaction. Therefore, both transactions cause events on
these signals, at time 20 on b and at time 25 on c.

In the example of Figure 7.10, we carefully avoided placing a
transaction on the driver of a signal when there is still another pend-
ing transaction on that driver. If this happens, a decision has to be
made as to whether both or only one of the transactions remain on
the driver of the signals. Issues related to this matter will be treated
in Section 7.3.4 when we discuss sequential placement of transactions
on drivers of signals.

7.3.3 Delta Delay
In addition to real time delay, VHDL also defines a simulation cycle
as an internal delay, referred to as delta delay (). The primary use of
this delay is in modeling hardware concurrency. Consider the descrip-
tion of Figure 7.12 in which two concurrent signal assignments ap-
pear in the delta architecture of timing. When an event occurs on in-
puts a or b, a AND b is evaluated and scheduled to occur on the z
output after 10 ns. The complement of z is then placed on the driver
of z_bar with zero delay. Based on concurrency defined in the lan-
guage, it is expected that a AND b and its complement appear on z
and z_bar exactly at the same time.

ENTITY timing IS
 PORT (a, b : IN BIT; z, zbar : BUFFER BIT);
END ENTITY;
--
ARCHITECTURE delta of timing IS
BEGIN
 z_bar <= NOT z;
 z <= a AND b AFTER 10 NS;
END delta;

Figure 7.12 Demonstrating Need for Delta Delay

On the other hand, NOT z cannot be evaluated until z receives
its new value. The new value on z causes an event on this signal, and
this event causes the right hand side of z_bar to be evaluated and
new value assigned to z_bar. Obviously, evaluation of the right hand

VHDL Signal Model 239

side of z_bar must wait for the new value of z. In order to hide this
waiting, and make it appear as if both signals receive values at the
same real time, VHDL introduces the concept of delta delay time.

The z signal receives its new value 10 ns after an event on a or b,
and z_bar receives its new value a delta time after z receives its value
(10 ns +). Because delta time is only an internal simulation cycle and
does not contribute to real-time values, it appears as if z and z_bar
have received their values at the same time (that is, the same real
time).

In the example presented in Figure 7.13, nonzero delays were
used. For the purpose of demonstrating the concept of delta time de-
lay, we consider another version of the circuit description of Figure
7.1. The description in Figure 7.13 uses zero delay assignments for
the internal nodes of the circuit and a delayed assignment, with ac-
cumulative worst-case delay of 12 ns, for the w output.

ENTITY mux IS
 PORT (a, b, s : IN BIT; w : OUT BIT);
END ENTITY;
--
ARCHITECTURE concurrent of mux IS
 SIGNAL i, j, k : BIT;
BEGIN
 i <= NOT s;
 j <= a AND i;
 k <= b AND s;
 w <= j OR k AFTER 12 NS;
END ARCHITECTURE concurrent;

Figure 7.13 VHDL Description for Demonstrating the Delta Delay

 In our analysis of this description we use the same input values
used in the analysis that led to the timing diagram in Figure 7.4. The
new timing diagram, showing the events and transactions (vertical
rectangles), is shown in Figure 7.14. As before, we assume that a, b,
and s external signals are initialized to ‘1’; that is, their values prior
to time zero and at time zero are ‘1’. We also assume that, external to
this description, a ‘0’ is assigned to the s signal at time zero. Since s is
a signal, this new value appears on it a delta time later at time 1 .
One delta time after input s changes, nodes i and k receive their new
values; that is, i becomes ‘1’ (value of NOT s) and k becomes ‘0’ (value
of a AND b) at time 2 . The event on k causes a zero value to be
scheduled for output w after 12 ns, causing a (‘0’, 12 ns) transaction of
driver of w. The event on i causes the expression for j to be evaluated,
and as a results the value at node j changes one delta time after i
changes; it changes from ‘0’ to ‘1’ at time 3 . The event on j then

240 Chapter 7

causes the output expression to be evaluated, which again results in
scheduling a new value on the output 12 ns after this event, placing a
(‘1’, 12 ns) transaction on the driver of w.

Figure 7.14 Timing Diagram for the Description of Figure 7.13, Showing Delta Delays

The second transaction on the driver of the w output, (‘1’, 12 ns),
overwrites the first, (‘0’, 12 ns), and since the value of w is already a
‘1’, the dominant transaction causes no event on this line. Although
the steady state value on w is correct, the intermediate values on w
are not modeled according to the actual circuit. Note that transac-
tions on k and j at time zero do not translate to transactions on the w
output 12 ns later. This is because the physical time delay absorbs all
delta delays. Notice a glitch on j at zero time. The explanation of this
glitch is left as an exercise.

Another example of delta time, transactions, and concurrency is
shown in Figure 7.15. This description is for a chain of two zero-delay
inverters, with a being the first input, c the output, and b the mid
point. Signals a, b, and c are initialized to ‘0’. A ‘1’ is assigned to a,
causing a transaction on b, which in turn causes transaction on c.

ARCHITECTURE concurrent OF timing_demo IS
 SIGNAL a, b, c : BIT := ‘0’;
BEGIN
 a <= ‘1’;
 b <= NOT a;
 c <= NOT b;
END concurrent;

Figure 7.15 Chain of Two Inverters, Delta Time, Transactions, and Concurrency

VHDL Signal Model 241

The timing diagram in Figure 7.16 indicates that all transactions
occur at time zero between 0 +1 and 0 + 3 . Every transaction in this
analysis causes an event to occur. At time zero, a, b, and c signals
have values that are specified in the declarations of the signals. At
this time, a ‘1’ is scheduled for a, and the complement of a, whose
value is still ‘0’ at time zero, is scheduled for b; therefore, both a and b
will have (‘1’, 0 ns) transactions on their drivers. Also at time zero,
the complement of signal b, whose value is ‘0’ at this time, is sched-
uled for the c signal, causing the placement of (‘1’, 0 ns) transaction
on the driver of c. One delta time later at 1 , signals a, b, and c re-
ceive their new values, which are all ‘1’s. The new value on a causes a
transaction on b one delta time later at 2 , which results in an event
that changes b to ‘0’. Similarly, the value of b at 1 causes an event on
c at 2 . The event on b at time 2 causes the right hand side of as-
signment to c to be evaluated, which causes another event on c one
delta time later at 3 .

Figure 7.16 Timing Diagram for the timing_demo Description of Figure 7.15

As the last example for demonstration of delta delay, consider
the circuit in Figure 7.17a and its corresponding VHDL description in
Figure 7.17b. If the inverter and the buffer have zero delay values,
this circuit should oscillate in zero time forever. The waveform ex-
tracted from simulation of the oscillating (forever) architecture
(shown in Figure 7.17c) shows this oscillation. In zero real time (be-
tween 0 and 0 femtoseconds) values of x and y toggle for as long as
the simulation run is allowed to continue. The simulation time does
not advance beyond 0 fs.

242 Chapter 7

(a)

ARCHITECTURE forever OF oscillating IS
 SIGNAL x: BIT := ‘0’;
 SIGNAL y: BIT := ‘1’;
BEGIN
 x <= y;
 y <= NOT x;
END forever;

(b)

(c)
Figure 7.17 Oscillation in Zero Real Time. (a) Circuit to Model; (b) VHDL Representa-
tion; (c) Signal Waveforms

7.3.4 Sequential Placement of Transactions
Assignments to signals in the sequential bodies of VHDL, for exam-
ple, in the body of process statements, are done sequentially. This
means that the order in which signal assignments appear is impor-
tant, and it is legal to make multiple assignments to simple non-
resolved signals. Multiple sequential assignments cause new transac-
tions to be placed on the driver of a signal. New transactions may be
placed while there are transactions on the driver of the signal that
are still not expired. When a new transaction is to be placed on the
driver of a signal, the transactions that are already scheduled for that
signal will then be considered. The new transaction will either over-
write the previous transactions or be appended to them, depending on
the timing of the new transaction and the type of the assignment.

VHDL Signal Model 243

As an example for sequential placement of transactions in se-
quential bodies of VHDL, consider the code shown in Figure 7.18. The
first assignment to x places the (v1, t1) transaction on the driver of x.
Immediately following this assignment a new transaction (v2, t2) is to
be placed on the driver of x. This new transaction may overwrite the
existing transaction or may be appended to it in the driver of x. Con-
ditions under which appending or overwriting transactions occur will
be explained later in this section.

The WAIT statement at the end of the process statement causes
the process to suspend forever, allowing enough time for all pending
transactions to expire.

ARCHITECTURE sequential OF sequential_placement IS
 . . .
BEGIN
 PROCESS
 x <= v1 AFTER t1;
 x <= v2 AFTER t2;
 WAIT;
 END PROCESS;
END sequential;

Figure 7.18 Sequential Placement of Transactions in a Sequential Body of VHDL

Sequential placement of transactions on the driver of signals can
also be done in concurrent VHDL bodies. Consider, for example, the
code shown in Figure 7.19. Initially, (v1, 0) is placed on the driver of
a, and immediately after that the (v2, t1) transaction is appended to
it. Assuming initial value of a is not v1, signal a changes at time 0 to
v1 and then to v2 at time t1.

ARCHITECTURE concurrent OF sequential_placement IS
 . . .
BEGIN
 a <= v1, v2 AFTER t1;
 x <= a AFTER t2;
END concurrent;

Figure 7.19 Sequential Placement of Transactions in a Concurrent Body of VHDL

At time 0, when an event occurs on a that is on the right hand
side of the assignment to x, the (v1, t2) transaction (v1 being the
value of a at this time) will be placed on the driver of x. At time t1,
the time component of this transaction changes to t1-t2, making the
driver of x contain the (v1, t1-t2) transaction. Meanwhile, at this time,
signal a changes to v2, causing another event on the right hand side
of x. This event causes (v2, t2) to be considered for appending or

244 Chapter 7

overwriting the existing (v1, t1-t2) transaction on x. Appending or
overwriting depends on the values of v1, v2, t1, and t2 and the delay
mechanisms.

7.3.4.1 Signal Drivers. A signal has a driving value, and there may
be several pending transactions on this signal waiting to become cur-
rent. When a transaction becomes current, its value becomes the driv-
ing value of the signal. A driver for a scalar signal is represented by a
projected output waveform. We will represent a projected output
waveform as a queue of transactions. The tip of the queue is the ex-
pired transaction, which constitutes the driving value of the signal.
Figure 7.20 shows this representation.

Figure 7.20 Projected Output Waveform

Transactions are queued in the order of their time components.
In the figure shown, t1<t2<t3 … . As time advances, all transaction
time components (ti) are decremented. When the time component of a
certain transaction reaches 0, all transactions move forward in the
queue, and the one with the 0 time component replaces the driving
value of the signal.

Figure 7.21 Multiple Drivers of a Resolved Signal

VHDL Signal Model 245

A process statement (such as that shown in Figure 7.18) or a
concurrent signal assignment (such as that shown in Figure 7.19)
creates only one driver for a signal. Assignments to a signal in multi-
ple concurrent bodies create multiple drivers for the signal. Such a
signal must be resolved, and a resolution function must exist to re-
solve a value from multiple driving values. This situation is repre-
sented by multiple projected output waveforms in Figure 7.21.

The discussion of this section focuses on a single driver signal, as
shown in Figure 7.20. The multiple driver case depicted in Figure
7.21 will be discussed in the next section.

7.3.4.2 Transaction Appending Rules. An incoming new transac-
tion is characterized by its value, time, and delay mechanism. Trans-
actions on the driver of a signal are characterized by their value and
time only. A new transaction is compared with those already on the
driver of a signal (referred to as existing). Value and time of the
transactions and the delay mechanism of the incoming transaction
decide on the resulting transactions in the projected output waveform
of a signal.

A new transaction on the driver of a signal scheduled before an
already existing transaction always overwrites the existing transac-
tion. A new transaction on the driver of a signal scheduled after an
already existing transaction is appended to the existing transaction if
the delay is of the transport type.

For the inertial delays, inertial with reject and simple inertial
are handled slightly different and are discussed separately. For the
simple inertial, new transaction scheduled after the existing transac-
tion appends to the existing transaction unless the values of the
transactions are different and the difference between the time of the
new transaction and the existing transaction is less than the inertial
delay value. In this case, the new transaction overwrites the existing
transaction. For the inertial delay with a reject value, the new trans-
action scheduled after the existing transaction appends to the exist-
ing transaction unless the values of transactions are different and the
difference between the time of the new transaction and the existing
one is less than or equal to the inertial reject value. In this latter
case, the new transaction overwrites the existing transaction. Figure
7.22 summarizes this discussion of the resulting transaction on the
driver of a signal. Various situations of overwriting or appending
transactions will be illustrated in several examples.

246 Chapter 7

Figure 7.22 Effective Transactions on the Driver of a Signal when Multiple Transac-
tions Are Sequentially Placed on the Signal Driver

In the examples that follow, we use a process statement to place
a transaction on the driver of a signal. In this same process, another
signal assignment with a certain delay mechanism places a second
transaction on the driver of this signal. A WAIT statement at the end
of the process statement suspends the process and stops further
placement of transactions on the signal. The signal used for this
study is of type v4l, which can take ‘X’, ‘0’, ‘1’ or ‘Z’ values.

Case 1: When a sequential signal assignment statement is executed,
a (v1, t1) transaction will be placed on the driver of the target signal.
If another signal assignment with a transport delay mechanism
causes a second transaction (v2, t2) to be placed on the driver of the
same signal, the first transaction will be overwritten by the second
transaction if t2 is less than t1. For example, in the process of Figure
7.23, the (‘1’, 5 ns) transaction is discarded, resulting in the timing
diagram shown in this figure. This figure also shows the driver of w
before and after the placement of (‘0’, 3 ns) transaction. The initial
value of w1 is ‘Z’. At time 3 ns, the (‘0’, 3 ns) transaction expires,
which causes the driving value of w1 to become ‘0’. This example il-
lustrates box 1 of Figure 7.22.

VHDL Signal Model 247

case1: PROCESS BEGIN -- Transport, Before
 w1 <= ‘1’ AFTER 5 NS;
 w1 <= TRANSPORT ‘0’ AFTER 3 NS;
 WAIT;
END PROCESS case1; -- Overwrites existing

Figure 7.23 Transport Delay, Before Existing Transactions

Case 2: On the other hand, if t2 of the new transaction is greater than
t1 of the existing transaction and transport delay mechanism is used
for placement of the new transaction, the situation shown in box 2 of
Figure 7.22 occurs. In this case the new transaction will be appended
to the existing one.

case2: PROCESS BEGIN -- Transport, After
 w2 <= ‘1’ AFTER 5 NS;
 w2 <= TRANSPORT ‘0’ AFTER 8 NS;
 WAIT;
END PROCESS case2; -- Appends to existing

Figure 7.24 Transport Delay After Existing Transaction

248 Chapter 7

Figure 7.24 shows an example for this case. The (‘1’, 5 ns) trans-
action remains on the driver of w2 and expires at time 5 ns. The sec-
ond transaction, (‘0’, 8 ns), expires 3 ns later, causing the value of w
to change to ‘0’. Figure 7.24 also shows the driver of w2 before and
after placement of (‘0’, 8 ns).

Case 3: Figure 7.25 is used to demonstrate the interaction of transac-
tions when the new transaction, i.e., (v2, t2), is being placed iner-
tially, and its time component, (t2), is less than the time component,
(t1), of the existing transaction, i.e., (v1, t1). This case is represented
in boxes 3a and 3b of Figure 7.22. For the inertial and inertial with
reject delay mechanism the second inertially delayed assignment in
Figure 7.25 sequentially places the (‘0’, 3 ns) transaction on the driver
of w3a or w3b. This new transaction overwrites the existing (‘1’, 5 ns)
transaction. The waveform in this figure shows (‘0’, 3 ns) expiring at 3
ns, causing the current driving value of w3a or w3b to become ‘0’ at
this time. The initial value of w3a or w3b is assumed to be ‘Z’.

case3a: PROCESS BEGIN -- Inertial, Before
 w3a <= ‘1’ AFTER 5 NS;
 w3a <= INERTIAL ‘0’ AFTER 3 NS;
 WAIT;
END PROCESS case3a; -- Overwrites existing
--
case3b: PROCESS BEGIN -- Reject, Before
 w3b <= ‘1’ AFTER 5 NS;
 w3b <= REJECT 3 NS INERTIAL ‘0’ AFTER 3 NS;
 WAIT;
END PROCESS case3b; -- Overwrites existing

Figure 7.25 Inertial or Inertial with Reject, Before Existing

VHDL Signal Model 249

Case 4: If the new transaction is being placed inertially (with or with-
out reject), values of new and existing transactions play a role in de-
ciding whether the new transaction appends or overwrites the exist-
ing one. If v2 and v1 (values of existing and new transactions, respec-
tively) are equal, the new inertially placed transaction appends to the
already existing one. This situation is represented in boxes 4a or 4b of
Figure 7.22. Example processes and their corresponding timing dia-
gram are shown in Figure 7.26. As shown, the existing (‘0’, 5 ns) and
the new (‘0’, 8 ns) transactions expire and become driving values for
w4a or w4b.

case4a: PROCESS BEGIN -- Inertial, After, Vn=Ve
 w4a <= ‘0’ AFTER 5 NS;
 w4a <= INERTIAL ‘0’ AFTER 8 NS;
 WAIT;
END PROCESS case4a; -- Appends to existing
--
case4b: PROCESS BEGIN -- Reject, After, Vn=Ve
 w4b <= ‘0’ AFTER 5 NS;
 w4b <= REJECT 8 NS INERTIAL ‘0’ AFTER 8 NS;
 WAIT;
END PROCESS case4b; -- Appends to existing

Figure 7.26 Inertial or Inertial with Reject, Same Value Transaction After Existing

Shown in Figure 7.26, when t2 is larger than t1 and v2 = v1,
specifying a reject value that is different from the default inertial de-
lay does not influence the final projected output waveform of the sig-
nal being assigned.

Case 5: Our next example concerns an inertial delay mechanism for
which the new transaction is after the existing, and unlike case 4, the
values of the new transaction and the existing one are different. As

250 Chapter 7

illustrated in Figure 7.27, the existing transaction value is ‘1’, and
that of the new one is ‘0’. In this case, the new transaction overwrites
the existing, causing w5 to remain ‘Z’ until 8 ns that the (‘0’, 8 ns) ex-
pires. When this happens, w5 becomes ‘0’ at 8 ns.
 The initial value of w5 of Figure 7.27 is ‘Z’. The pending transac-
tion (‘1’, 5 ns) is placed on w5, but is later overwritten by (‘0’, 8 ns).
The final value of w5 becomes ‘0’ at 8 ns.

case5: PROCESS BEGIN -- Inertial, After, Vn/=Ve
 w5 <= ‘1’ AFTER 5 NS;
 w5 <= INERTIAL ‘0’ AFTER 8 NS;
 WAIT;
END PROCESS case5; -- Overwrites existing

Figure 7.27 Inertial Delay, Different Value Transaction After Existing

Case 6: The next case deals with the inertial delay mechanism with a
reject value. As in case 5, the values of the existing and new transac-
tion are different. In this case (as shown in Figure 7.28), the differ-
ence between the time of the new transaction and that of the existing
one is calculated. If this difference is less than or equal to the reject
delay value, e.g., 8 ns – 5 ns < 4 ns, then the new transaction over-
writes the existing one.
 As shown in Figure 7.28, this case produces the same result as in
case 5, in which the reject value is considered to be the same as the
inertial delay value.

Case7: Our final example illustrates the case of a new transaction
with a different value than the existing one, with a reject value that
is less than the difference of timing of the new and existing transac-
tions. This situation is similar to the previous one (case 6), except for
the reject value. As shown in Figure 7.29, a new transaction of the
type discussed appends to the existing transaction of the left hand

VHDL Signal Model 251

side signal. As shown in this figure, the difference between the time
of the new transaction and that of the existing, i.e., 8 ns – 5 ns, is lar-
ger than the reject value that is 2 ns.

case6: PROCESS BEGIN
 -- Reject, After, Vn/=Ve, Diff <= Reject
 w6 <= ‘1’ AFTER 5 NS;
 w6 <= REJECT 4 NS INERTIAL ‘0’ AFTER 8 NS;
 WAIT;
END PROCESS case6; -- Overwrites existing

Figure 7.28 Inertial with Reject, Different Values, After Existing, Reject Occurs

case7: PROCESS BEGIN
 -- Reject, After, Vn/=Ve, Diff > Reject
 w7 <= ‘1’ AFTER 5 NS;
 w7 <= REJECT 2 NS INERTIAL ‘0’ AFTER 8 NS;
 WAIT;
END PROCESS case7; -- Appends to existing

Figure 7.29 Inertial with Reject, Different Values, After Existing, Reject Doesn’t Occur

252 Chapter 7

7.3.4.3 Pulse Rejection. Section 7.2 presented pulse rejection and
delay modeling at an abstract level. Based on the delay model and
pulse width, we discussed conditions under which a pulse is delayed
or removed. Waveforms in Figure 7.5 presented several examples for
various delay mechanisms. At a lower abstraction level, pulse delays
and rejections are explained in terms of sequential placement of
transactions on signal drivers. To demonstrate this, we consider
transactions and events that occur on the three target signals in
Figure 7.5 between times 0 and 40 ns. Assignments for producing
events in this time interval and resulting waveforms are repeated
here in Figure 7.30. This figure also shows transactions and events
for the target signals.

Figure 7.30 Pulse Rejection in Inertial, Reject, and Transport Delay

Signals waveform, target1, target2, and target3 are all initially
zero. At time 0, all three assignments to target signals are executed,
which cause (‘0’, 5 ns) transactions to be placed on the drivers of all
three target signals. Note that the value of this transaction is the ini-
tial value of waveform. Transactions and activities on target signals
between times 0 and 40 ns are shown in Figure 7.31. At time 3 ns the
initial transactions on target1, target2 and target3 have changed to
(‘0’, 2 ns). At this time, waveform changes from ‘0’ to ‘1’, causing the
placement of the (‘1’, 5 ns) transaction on the driver of target signals.
This new transaction overwrite the (‘0’, 2 ns) transactions on target1
and target2, according to the rules shown in boxes 5 and 6 in Figure
7.27. On the other hand, the (‘1’, 5 ns) transaction appends to the ex-
isting (‘0’, 2 ns) transaction on driver of target3. This is according to
the rule specified in box 2 in Figure 7.22. Two nanoseconds later, at
time 5 ns, the time component of (‘0’, 2 ns) on target3 is reduced to 0.
The shaded area on target3 at time 5 ns (Figure 7.30) shows expira-
tion of this transaction. At 8 ns, the (‘1’, 5 ns) transactions placed on
target signals at 3 ns expire, causing the value of these signals to
change to ‘1’. Also at this time, waveform changes to ‘0’, causing (‘0’, 5
ns) transaction to be placed on the drivers of the three target signals.
When these transactions expire, the values of targets change to ‘0’ at

VHDL Signal Model 253

time 13 ns. The result is that the 5 ns pulse that started on waveform
at time 3 ns appears on all target signals with 5 ns of delay.

Figure 7.31 New, Pending, and Expired Transactions on the Targets of Figure 7.30

A second pulse starts at time 14 ns on waveform. At this time,
the (‘1’, 5 ns) transaction is placed on the drivers of target signals. At
time 18 ns (4 ns after placement of the original transactions), time
components of existing transactions on target signals are reduced to 1
ns, making them (‘1’, 1 ns). At this time, ‘1’ to ‘0’ event on waveform
causes (‘0’, 5 ns) transactions on drivers of target signals. This new

254 Chapter 7

transaction overwrites the existing transaction on target1 according
to box 5 of Figure 7.22 (5 ns - 1 ns is less than 5 ns, the inertial delay
value of target1 assignment). The placement of this transaction on
target2 and target3 follows rules specified in boxes 7 and 2 of Figure
7.22, respectively, which result in appending this transaction to the
existing one for each signal. Existing transactions on target2 and tar-
get3, i.e., (‘1’, 1 ns) and (‘0’, 5 ns), expire at time 19 ns and 23 ns, re-
spectively, completing positive pulses on these signals. On the other
hand, only one driver is left on the drive of target1, which expires at
time 23 ns, causing no change in the value of this signal.

A third pulse 3 ns long appears on waveform starting at time 24
ns. Figure 7.31 shows transactions that are placed on target signals of
Figure 7.30. At time 27 ns, (‘0’, 5 ns) transactions overwrites existing
transactions on target1 and target2 according to boxes 5 and 6 of
Figure 7.22. On the other hand, according to box 2 of this figure, the
(‘0’, 5 ns) transaction appends to the existing transaction on the
driver of target3 at time 27 ns. Other activities caused by pulses on
waveform up to 40 ns are shown in Figure 7.31. The resulting wave-
forms on target signals are shown in Figure 7.30.

7.3.4.4 Placing Waveform Elements. Before we end this topic, we
present another example to focus on two important issues related to
the sequential placement of transactions. The First issue is that, as a
result of an event on the right hand side of a concurrent signal as-
signment all right hand side waveform elements will be sequentially
scheduled on the left hand side signal. The second issue is that the
specified delay mechanism only applies to the first waveform element,
and all other waveform elements are treated as transport. Activities
on signals a and b are shown in Figure 7.32. At time 0, the (‘1’, 5 ns)
transaction is to be placed on the driver of a with an inertial mecha-
nism, while (‘0’, 10 ns) is to be placed on the driver of this signal with
a transport delay mechanism. Because (‘0’, 10 ns) will be appended to
(‘1’, 5 ns), a positive pulse appears on a. Every time an event occurs
on a, the (‘0’, 0 ns) transaction with inertial mechanism and the (a, 3
ns) transaction with transport mechanism are sequentially placed on
the driver of b.
 Consider for example time 10 ns when a makes a ‘1’ to ‘0’ transi-
tion. The value of signal b at this time is ‘1’. As the result of the event
on a, (‘0’, 0 ns) and (‘0’, 3 ns) are placed on the driver of b. Placement
of (‘0’, 0 ns) follows the overwriting rule specified in box 3 of Figure
7.22 for an inertially placed transaction. Placement of (‘0’, 3 ns) fol-
lows the rule specified in box 2 of Figure 7.22 for a transport delay
mechanism. At time 13 ns, the last transaction on the driver of b ex-
pires with no change in the value of signal.

VHDL Signal Model 255

ARCHITECTURE delay OF example IS
 SIGNAL a, b, BIT := ‘0’;
BEGIN
 a <= ‘1’ AFTER 5 NS, ‘0’ AFTER 10 NS, ‘1’ AFTER 15 NS;
 b <= ‘0’, a AFTER 3 NS;
END ARCHITECTURE delay;

Figure 7.32 Sequential Placement of Transactions by Concurrent Assignments

7.4 Multiple Concurrent Drivers
The discussion of the previous section concentrated on a single driver
of a signal and discussed how various transactions interact to produce
a signal value. In situations that a signal appears on the left hand
sides of multiple concurrent assignments, or multiple process assign
values to the signal, multiple drivers will be created for the signal.
While placement of values in each driver remains as discussed in Sec-
tion 7.3, the final value of the signal will be determined by all signal
drivers. Figure 7.21 shows how multiple driving values are resolved
to produce a value for a signal with multiple assignments.

7.4.1 Resolving between Multiple Driving Values
Figure 7.33 shows a multiplexer circuit that uses NMOS pass transis-
tors to select either of the a, or b inputs. The transistors act as unidi-
rectional pass gates that cause node y to be driven by a or b depend-
ing on the value of s.

Figure 7.33 Pass Transistor Based Multiplexer

256 Chapter 7

 Figure 7.34 shows a VHDL description that is intended to model
the circuit Figure 7.33. Type of signals, and in particular, the type of
y, is v4l which is the four-value Verilog equivalent type discussed in
Chapter 6. Corresponding to each transistor in Figure 7.33, there is a
signal assignment that either puts the value of an input (a or b), or
puts ‘Z’ on y. This means that each signal assignment continuously
drives its left hand side with a value. Since the two signal assign-
ments are concurrent, y has two drivers at all times. If s is ‘0’, the t1
assignment drives y with the value of a, and the t2 assignment drives
y with ‘Z’. The description shown in this figure does not specify how
these two values are used to form the final value of y. This description
does not compile and produces an error indicating that y cannot have
two drivers.

ENTITY multiplexer IS
 PORT (a, b, s : IN v4l; w : OUT v4l);
END ENTITY;
--
-- Does not compile
ARCHITECTURE wired OF multiplexer IS
 SIGNAL y : wiring v4l;
BEGIN
 T1: y <= a WHEN s=‘0’ ELSE 'Z';
 T2: y <= b WHEN s=‘1’ ELSE 'Z';
 w <= y;
END ARCHITECTURE wired;

Figure 7.34 Multiplexer Circuit, Two Concurrent Assignments (Does Not Compile)

 In order to remedy this problem, we have to do in VHDL what is
being done in the actual circuit of Figure 7.33. In the transistor cir-
cuit, since only one transistor conducts at any one time, one side of
the wiring at y is always ‘Z’. An actual value (‘0’ or ‘1’) coming from
the conducting transistor overrides the ‘Z’ value coming from the
other side, and causes y to take the value of data input of the conduct-
ing transistor. In other words, node y has a resolution that resolves
between multiple driving values.

7.4.1.1 Resolving a Pair of Values. In order to define a resolution in
VHDL, we first have to decide how two driving values are to resolve.
For example, corresponding with the wiring of Figure 7.33, ‘0’ and ‘Z’
resolve to ‘0’, and ‘1’ and ‘Z’ resolve to ‘1’. Figure 7.35 shows a wiring
function that specifies resolutions for every pair of values of the v4l
type.

VHDL Signal Model 257

FUNCTION wire (a, b : v4l) RETURN v4l IS
 CONSTANT v4l_wire_table : v4l_2d := (
 ‘X’ => (‘X’, ‘X’, ‘X’, ‘X’),
 ‘0’ => (‘X’, ‘0’, ‘X’, ‘0’),

‘1’ => (‘X’, ‘X’, ‘1’, ‘1’),
‘Z’ => (‘X’, ‘0’, ‘1’, ‘Z’));

BEGIN
 RETURN v4l_wire_table (a, b)
END wire;

Figure 7.35 Resolving Every Pair of Values of v4l Type

 The wire function specifies resolutions of values of the v4l type in
a tabular fashion. The type of v4l_wire_table constant is v4l_2d that
was discussed in Chapter 6. The function return value is decided by a
lookup in this table. As shown, for example, a ‘0’ and ‘1’ resolve to ‘X’
indicating a short in hardware.

7.4.1.2 Resolving Multiple Driving Values. In order to be able to
apply the wire resolution of Figure 7.35 to node y of the VHDL code of
Figure 7.34, we have to form a function that applies the wire function
to all possible drivers of y. This means that, although y in this exam-
ple has only two drivers, the resolution of multiple driving values has
to allow for any number of drivers, 0 to n.
 The wiring function shown in Figure 7.36 is a resolution function
that applies the wire function of Figure 7.35 to every pair of values in
the drivers input of this function. The drivers input of wiring is of the
vector type of its v4l return value. As shown in Figure 7.36, the for-
loop in the body of the wiring function uses the accumulate variable
to accumulate the wire result of all drivers elements. If drivers has a
null range, i.e., an array of no elements, the default value of accumu-
late that is ‘Z’ will be returned.

FUNCTION wiring (drivers : v4l_vector) RETURN v4l IS
 VARIABLE accumulate : v4l := 'Z';
BEGIN
 FOR i IN drivers'RANGE LOOP
 accumulate := wire (accumulate, drivers(i));
 END LOOP;
 RETURN accumulate;
END wiring;

Figure 7.36 Wiring Resolution Function, an Array Version of Wire

7.4.1.3 Resolution Function. The wiring function is a resolution
function that can be applied to signal y of Figure 7.34. Before we show
how this is done, there are certain properties of resolution functions

258 Chapter 7

that must be discussed. A resolution function has a return type and
an argument that is an unconstrained array of its return type. Recall
from our discussion in Chapter 6 that v4l_vector was defined in our
VerilogLogic package as an unconstrained array of v4l. Furthermore,
in order for a function to qualify as a resolution function, the array
type argument must be its only argument.
 A function that does not read a global variable is called a PURE
function. VHDL requires that a function that is to be used as a reso-
lution function must be pure. Therefore, shared variables, variables
visible in a declarative part that a resolution function is placed, and
external file data cannot be read in a resolution function.
 The vector argument of a resolution function allows any number
of drivers including zero. A resolution function should provide a de-
fault value that will be returned if the resolution function is called
with null drivers. Having null drivers occurs if all drivers of a signal
are disconnected. We will describe driver disconnection in a later sec-
tion in this chapter. The value returned by our wiring resolution
function if it is called with null drivers is ‘Z’.
 The format of the resolution function of Figure 7.36 can be used
for developing many gate level resolution functions like wired-AND
and wired-OR. In such functions, the corresponding logic function
must be applied to all bits of the drivers input of the function. VHDL,
however, does not limit resolution functions to gate level applications.
A resolved type of a record, or any complex type, can be defined in
VHDL. Furthermore, the body of a resolution function is not limited
to performing a uniform operation on all drivers like that shown for
the wiring function or what should be done for implementing a wired-
AND or wired-OR function. A resolution can be a voter for reliability
applications, an accumulative adder for load calculations, or it can
describe a routing algorithm for a network or NoC (Network on a
Chip) applications.
 Another property of resolution functions that is important to
mention is the ordering and index of the active drivers of a resolution
function in its array argument. The VHDL language guarantees that
all active drivers of a resolution function form a contiguous array that
becomes the argument of the resolution function. The order of these
elements, their range, and starting value of their index are not known
and not specified in the VHDL language.

7.4.1.4 Applying a Resolution Function. A function written as
specified above qualifies as a resolution function. Such a function can
be applied to any signal whose type is the same as the return type of
the resolution function. Figure 7.37 shows he wired architecture of
the multiplexer that compiles and implements a 2-to-1 one-bit multi-
plexer. As shown in this figure, signal y is declared as wiring v4l. The

VHDL Signal Model 259

use of wiring in this declaration refers to the wiring resolution func-
tion of Figure 7.36. This function must be made visible to this archi-
tecture in order to be used in its declarations. This visibility require-
ment can be achieved by placing the wiring function in a package, or
directly using the function in the architecture declarative part. We
assume that this function is in the VerilogLogic package that is used
in this architecture.
 The type of y in the architecture of Figure 7.37 is defined as a
subtype of v4l. The use of wiring before the actual type mark (v4l)
specifies this subtype. The assignment of y to w is easily done, since
the base of y is v4l that is the same as that of w. A signal defined as
such is referred to as a resolved signal. We say that y is a resolved
signal using the wiring resolution function.

ARCHITECTURE wired OF multiplexer IS
 SIGNAL y : wiring v4l;
BEGIN
 T1: y <= a WHEN s=‘0’ ELSE 'Z';
 T2: y <= b WHEN s=‘1’ ELSE 'Z';
 w <= y;
END ARCHITECTURE wired;

Figure 7.37 Working Architecture for Multiplexer

7.4.1.5 Resolution Package. The above example showed how a one-
bit signal could be declared as having a certain resolution function. In
order to be able to declare multi-bit resolved busses, a vector type
having resolved element types must be defined. Figure 7.38 shows
declarations necessary for defining resolved signals and busses.

FUNCTION wiring (drivers : v4l_vector) RETURN v4l;
SUBTYPE wired_v4l IS wiring v4l;
TYPE wired_v4l_vector IS
 ARRAY (NATURAL RANGE <>) OF wired_v4l;

Figure 7.38 Resolution Related Declarations

 Declarations shown in Figure 7.38 must be placed in a package
to be used by designers wanting to use the wiring resolution function.
The first declaration is the declaration of the resolution function it-
self. The second declaration specifies wired_v4l as a wiring subtype of
v4l. This subtype indication can be used for declaring scalar signals.
For example in Figure 7.37 instead of using wiring v4l for declaring y,
we could use wired_4vl. The third declaration in Figure 7.38 declares
an array type of resolved elements. The wired_v4l_vector is an uncon-

260 Chapter 7

strained array whose elements are of wired_4vl type. Since wired_4vl
is a resolved type, wired_4vl_vector becomes the type mark for declar-
ing resolved busses.
 Figure 7.39 shows an n-bit 4-to-1 multiplexer that is described by
four concurrent three-state bus connections. All signal types in this
description are of the resolved array type, wired_v4l_vector. This de-
scription assumes that the wire function of Figure 7.35, the wiring
resolution function of Figure 7.36, and the declarations of Figure 7.38
exist in the VerilogLogic package, and this package is compiled in the
utilities library.

LIBRARY utilities;
USE utilities.VerilogLogic.ALL;

ENTITY multiplexer_n4 IS
 PORT (a, b, c, d : IN wired_v4l_vector;
 s : IN wired_v4l_vector (1 DOWNTO 0);
 w : OUT wired_v4l_vector);

END ENTITY;
--
ARCHITECTURE wired OF multiplexer_n4 IS
BEGIN -- Four Bus Connections

 BC1: w <= a WHEN s="00" ELSE
 (a'RANGE => 'Z');
 BC2: w <= b WHEN s="01" ELSE
 (b'RANGE => 'Z');
 BC3: w <= c WHEN s="10" ELSE
 (c'RANGE => 'Z');
 BC4: w <= d WHEN s="11" ELSE
 (d'RANGE => 'Z');

END ARCHITECTURE wired;

Figure 7.39 Using Resolved Multi-bit Busses

7.4.1.6 A Resolution Package. As discussed above, several types
and functions are needed for expressing a resolution function. We dis-
cuss a wired-OR resolution package to further clarify topics discussed
in the previous sub-sections.
 For a wired-OR resolution, the function that applies to every pair
of drivers is OR. For a given type, e.g., v4l, if the OR operation is al-
ready overloaded, a function such as the wire function of Figure 7.35
is not needed. With this assumption, the declaration and body of the
VerilogLogic package that is to contain the oring related definitions is
shown in Figure 7.40. Note here that the result value of oring for null
drivers is ‘0’, which is the non-controlling value for an OR function.

VHDL Signal Model 261

PACKAGE VerilogLogic IS
FUNCTION oring (drivers : v4l_vector) RETURN v4l;
 SUBTYPE ored_v4l IS oring v4l;
 TYPE ored_v4l_vector IS
 ARRAY(NATURAL RANGE<>)OF ored_v4l;
 . . .
END PACKAGE VerilogLogic;

PACKAGE BODY VerilogLogic IS
 FUNCTION oring (drivers : v4l_vector) RETURN v4l IS
 VARIABLE accumulate : v4l := ‘0’;
 BEGIN
 FOR i IN drivers'RANGE LOOP
 accumulate := accumulate OR drivers(i);
 END LOOP;
 RETURN accumulate;
 END oring;
 . . .
END PACKAGE BODY VerilogLogic;

Figure 7.40 Package Description for Oring Resolution Function

7.4.1.7 Relation to Sequential Transactions. We use the notation
show in Figure 7.41 to represent resolution functions, signal drivers,
and driving a resolved left hand side signal. This notation elaborates
the fact that sequential placement of transactions on a signal driver
affect values that become resolution function inputs after they expire.
While not expired, a signal transaction remains pending and maybe
overwritten or appended to according to rules specified in Section 7.3.
The timing of a resolution function is 0 delta and 0 real time. This
means that the resolution function always provides a value resolved
from driving values of its drivers even though the assignment of this
value to the left hand side signal is always timed.

Figure 7.41 Projected Output Waveforms of Resolution Function

262 Chapter 7

7.4.2 Resolutions with Guarded Assignments
The topic of guarded signals, guarded signal assignments, and use of
guarded signal in block statements with a guard expression were dis-
cussed in Chapter 4. In this section we revisit this topic and explain
the role of resolution functions and resolved signals in guarded as-
signments.
 A guarded signal assignment uses the GUARDED keyword on
the right hand side of the assignment arrow. Connection and the dis-
connection of the right hand side of such an assignment are controlled
by a guard expression represented by an implicit or explicit guard
signal.
 Figure 7.42 shows a selection-logic with n inputs and n select
lines. An active select line causes its corresponding input to be con-
nected to y. We have used guarded signal assignments for describing
connections, and have generated n such assignments using a for-
generate statement. This description corresponds to the transistor
circuit shown in Figure 7.43, and will be used as an example in the
discussions that follow.

LIBRARY utilities;
USE utilities.VerilogLogic.ALL;

ENTITY selection_1ofn IS
 PORT (ins : IN wired_v4l_vector;
 sel : IN wired_v4l_vector;
 w : OUT wired_v4l);
END ENTITY;
--
ARCHITECTURE wired OF selection_1ofn IS
 SIGNAL y : wired_v4l BUS;
BEGIN
 Mi: FOR i IN ins'RANGE GENERATE
 Ti: BLOCK (sel(i) = ‘1’) BEGIN

 y <= GUARDED ins (i);

 END BLOCK Ti;
 END GENERATE Mi;
 w <= y;
END ARCHITECTURE wired;

Figure 7.42 1-of-n Selection Logic Assign Guarded Assignments

VHDL Signal Model 263

Figure 7.43 NMOS Transistor Based Selection Logic

 If multiple guarded assignments are made to a left hand side
signal, the signal must be resolved. When the guard expression of a
signal assignment becomes false, the right hand side of the signal
assignment disconnect from its left hand side. In case of a resolved
left hand side (multiple guarded assignments to a signal), disconnec-
tion stops placement of values into the disconnected driver, and af-
fects the way an expired driver value contributes to its resolution
function.

Figure 7.44 Guarded Signal Assignments into Resolved Signals

264 Chapter 7

7.4.2.1 Guarded Assignments. Figure 7.44 shows concurrent
guarded signal assignments made to a left hand side resolved signal.
As shown, each driver is controlled by a guard expression. As shown,
and as described in the above paragraph, a driver guard affects a left
hand side signal in two ways. One is the disconnection from the right
hand side as illustrated by the switches in Figure 7.44, and the other
is the contribution of the resolution function as shown by the dia-
mond boxes. The disconnection of the right hand side from the driver
is independent of the kind (BUS or REGISTER) of the left hand side
signal. Actually, for this disconnection, the left hand side signal does
not even have to be a guarded signal (no kind is required). However,
the kind of a signal, decides how an expired value affects the resolu-
tion function. See Figure 7.42 as an example description.

7.4.2.2 BUS Kind Resolved Signal. When a disconnection occurs
from a left hand side signal of Bus kind, the right hand side no longer
contributes to the resolution function, and is removed from the driver
array argument of the resolution function. The resolution function is
then called to calculate the new signal value without the disconnected
value. The same happens when the last driver is disconnected from a
Bus kind signal. With the last disconnection, the resolution function
is called with null drivers, which causes the default resolution func-
tion value to be returned as the signal value. In the selection_1ofn
circuit of Figure 7.42, the last disconnection from y, causes the wiring
resolution function of Figure 7.36 to be called with null drivers, caus-
ing return of the ‘Z’ value.

7.4.2.3 REGISTER Kind Resolved Signal. Like a Bus kind guarded
signal, disconnection of a driver of a Register kind, stops further
transactions from being placed in the disconnected driver, and re-
moves that driver from the resolution function argument. However,
unlike the Bus kind that the last disconnection removes the driver
and then calls the resolution function with null drivers, the last dis-
connection from a Register kind only removes the driver contribution
and does not call the resolution function. This causes a Register kind
guarded signal to retain its last value, implying a register.

Figure 7.45 shows a transistor selection circuit with an inverted
output. Because transistors of the output inverter store charge in
their gate capacitances, when all select inputs are ‘0’, node y retains
its old value. This circuit is modeled by the architecture shown in
Figure 7.46.

VHDL Signal Model 265

Figure 7.45 NMOS Half-Register with Selection Logic

ARCHITECTURE wired_reg OF selection_1ofn IS
 SIGNAL y : wired_v4l REGISTER;
BEGIN
 Mi: FOR i IN ins'RANGE GENERATE
 Ti: BLOCK (sel(i) = ‘1’) BEGIN
 y <= GUARDED ins (i);
 END BLOCK Ti;
 END GENERATE Mi;
 w <= NOT y;
END ARCHITECTURE wired_reg;

Figure 7.46 Using REGISTER Kind for Selection Logic with Half-Register

7.4.2.4 No Kind Resolved Signal. Disconnection of a driver from a
resolved signal for which a kind is not specified, i.e., signal is not
guarded, stops further transactions from being placed in the signal
driver, and disconnects the driver from the resolution function. Such
a disconnected driver retains its value at the time of disconnection
and continues to contribute to the resolution function.

The IEEE standard for VHDL synthesis does not allow guarded
assignments with signals that are not guarded. In this book, we have
avoided making multiple assignments to such signals. With only one
driver, a non-guarded signal behaves similar to a guarded signal with
the REGISTER kind.

7.4.2.5 Comparing Disconnections. The difference between BUS
and REGISTER kinds of guarded signal can also be explained by the
use of the notation used in Figure 7.44. Figure 7.47 shows the last
disconnection from (a) a guarded signal of kind BUS, (b) a guarded
signal of kind REGISTER, and (c) a non-guarded signal. This figure
shows values contributing to a resolution function before and after
the last driver is disconnected. The left column shows the values be-
fore disconnection, and the right column shows the resolved values
after the last disconnection occurs on the three kinds of signals.

266 Chapter 7

Figure 7.47a shows that the last disconnection from a bus re-
placed the driving value of the disconnected driver with NULL and
the resolution function is called to calculate the new value using
NULL input. In Figure 7.47b, for a REGISTER kind, the last driver
value is replaced with NULL, but the resolution function is not called
to calculate a new value based on NULL input. For the last case of
disconnection from a non-guarded signal, the driving value is not re-
moved, and the resolution function continues to provide its result
based on the value before disconnection.

Figure 7.47 Last Disconnections. (a) BUS Kind; (b) REGISTER Kind; (c) no Kind

7.4.3 Resolving INOUT Signals
Using a resolved signal on the right and left hand sides of a signal
assignment does not necessarily refer to the same signal value. For
example the assignment

a <= a AND b AFTER delay;

uses a on the right and left hand sides of a signal assignment. The
value used on the right hand side contributes to the AND function
which provides a value to the resolution function of signal a. How-
ever, the value assigned to a is the value out of the resolution func-
tion and not the value that a inputs to the resolution function. This
situation is graphically presented in Figure 7.48. Since INOUT ports
are bi-directional lines, an implicit IN and an implicit OUT port exist

VHDL Signal Model 267

for each INOUT line. Because INOUT ports provide outputs as well
as inputs, connecting them requires resolution functions. When sev-
eral INOUT ports are connected, the resolution function of the re-
solved intermediate signal provides a value that will be read from
each INOUT port when used on the right hand side of an expression.
Figure 7.49 shows a partial VHDL code and its corresponding graphi-
cal notation for connecting INOUT lines.

Since signal w is driven by the OUT side of INOUT of one and
two, it is declared as a resolved signal of type oring v4l. The resolved
value of w is given to the IN sides of both component INOUT ports.
Reading x or y in component one or two (using it on a right hand side)
reads the resolved w value. On the other hand, making an assign-
ment to x or y (from component one or two, respectively) provides an
input value for the oring resolution function. The input value pro-
vided as such, contributes to the value of the w signal.

Figure 7.48 Resolved Signals on Right- and Left-Hand Sides

Figure 7.49 Connecting INOUT Ports Require Resolved Signals. (a) VHDL Code; (b)
Graphical Notation

268 Chapter 7

7.4.4 Standard Resolution
The IEEE standard logic (std_logic_1164) package discussed in the
previous chapters provides a resolution function and utilities and
type conversions based on this function.

7.4.4.1 Standard Type. The actual 9-value type defined in the
std_logic_1164 package is std_ulogic type. The “u” in this type mark
stands for unresolved. This type mark has ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘L’, ‘H’,
‘W’, and ‘-’ values. The IEEE 1164 standard defines the
std_ulogic_vector unconstrained array type and overloads various
logic operations and functions and procedures for std_ulogic and
std_ulogic_vector.

7.4.4.2 Resolution Function. The standard IEEE 1164 resolution
function is called resolved. The resolved function implements a wire
function that is similar to the wiring function that we developed for
our v4l type. The resolved function uses the resolution_table lookup
table to lookup the resolved value of a pair of wired std-ulogic values.
Details of this function can be found in the CD that accompanies this
book.

7.4.4.3 Resolved Type. The std_logic_1164 package defines the
std_logic type as its resolved type. This is a resolved subtype of
std_ulogic. All assignments to objects of std_logic type are generated
by the resolved resolution function.

The std_logic_1164 package contains overloaded functions and
operators for std_logic, std_logic_vector and their combinations with
std_ulogic and std_ulogic_vector. Overloadings are done such that the
resolved std_logic type can be used throughout a design. However,
using this impedes VHDL’s capability to detect and issue messages
for those cases that unwanted multiple assignments are made to non-
shared busses. To take advantage of this VHDL’s capability, it is rec-
ommended to use std_ulogic for single source busses and std_logic for
multi-source shared busses. Converting between the vector forms of
these types is easily done since they are considered as closely related
types.

7.5 Summary
We used “VHDL Signal Model” for the title of this chapter in order to
be able to discuss sequential and concurrent assignments of values to
signals all in one chapter. The first part of this chapter took a limited
look of a single driver and only discussed how sequential transactions
affect a signal driver. In the second part, we showed how multiple

VHDL Signal Model 269

driving values interact for resolving a value for a signal with multiple
concurrent drivers. The topics of sequential placement of transactions
and resolution functions were the two key topics that we discussed.
 With this chapter, we have completed all language related topics
and VHDL simulation model. The chapters that follow merely focus
on design of components using VHDL.

Problems
7.1 In the VHDL code shown below four processes generate drivers
on w, x, y, and z signals. Show transactions that expire on the drivers
of each signal.

PACKAGE placing IS
 TYPE four IS (a, b, c, d);
END placing;
--
USE WORK.placing.ALL;
--
ENTITY placement IS END ENTITY;
--
ARCHITECTURE sequential OF placement IS
 SIGNAL w, x, y, z : four;
BEGIN

P1: w <=
 four'RIGHTOF(w) AFTER 100 NS WHEN w /= four'RIGHT

 ELSE a AFTER 100 NS;
P2: x <=
 four'LEFTOF(x) AFTER 80 NS WHEN x /= four'LEFT

 ELSE d AFTER 80 NS;

 P3: y <= a AFTER 20 NS, w AFTER 30 NS, x AFTER 40 NS;

 P4: PROCESS (x) BEGIN
 z <= TRANSPORT w AFTER 20 NS;
 END PROCESS;

END sequential;

7.2 Given the following signal assignments, show all transactions
that are placed on the driver of each signal. At each event, show
transactions that are appended, overwritten, and are expired. Show
resulting waveforms on each signal; include transactions that expire
even if they do not result in an event.

270 Chapter 7

ARCHITECTURE dataflow OF signals IS
 SIGNAL a, b, c, d : v4l := ‘0’;
BEGIN
 a <= NOT a AFTER 8 NS WHEN NOW <= 30 NS;
 b <= ‘Z’, a AFTER 25 NS, ‘0’ AFTER 35;
 c <= ‘1’, a AFTER 5 NS, b AFTER 20 NS;
 d <= a AFTER 5 NS, b AFTER 15 NS, c AFTER 25 NS;
END dataflow;

7.3 Given the following guarded signal assignments, show wave-
forms that appear on t1, t2, and t3 as results of waveforms that are
generated on a1, a2, b1, and b2 signals. Show real time events only.

ENTITY block_test IS END ENTITY;
--
ARCHITECTURE guarded_blocks OF block_test IS
 SIGNAL a1, a2 : BIT;
 SIGNAL b1, b2 : BIT;
 SIGNAL t1, t2, t3 : BIT;
BEGIN
 a1 <= NOT a1 AFTER 100 US;
 a2 <= NOT a2 AFTER 150 US;
 b1 <= NOT b1 AFTER 350 US;
 b2 <= NOT b2 AFTER 225 US;
 outter : BLOCK (a1 = '1' AND a1'EVENT)
 BEGIN
 t1 <= GUARDED b1 AFTER 10 US;
 inner : BLOCK (a2 = '0' AND NOT a2'STABLE AND GUARD)
 BEGIN
 t2 <= GUARDED b2 AFTER 10 US;
 END BLOCK;
 END BLOCK;
 separate : BLOCK (a2 = '1')
 BEGIN
 t3 <= GUARDED NOT t3
 WHEN a1'STABLE(50 US)'DELAYED(75 US)'EVENT;
 END BLOCK;
END guarded_block;

7.4 In test applications it becomes necessary to inject a fault into a
circuit line. The fault overrides the normal value of the line and sets
it to ‘1’ or ‘0’ depending on stuck-at-1 or stuck-at-0 faults that are be-
ing injected. We are to develop utilities to enable us to inject faults
into lines of std_logic type. For this purpose, every circuit line be-
comes a record with a normal std_logic logic value and a field that
specifies the fault if there is one. This field takes sa1, sa0 and nofault
values for stuck-at-1, stuck-at-0 and non-faulty values. This value
decides if a line takes its normal value or a faulty ‘1’ or ‘0’. A) Show

VHDL Signal Model 271

std_ulogic_faultabe type of record as described above. B) Show utili-
ties for generating a resolution function to resolve between multiple
drivers for lines of type std_ulogic_faultabe C) Write a resolution
function that generates a normal std_logic value if no fault is injected
on a line, or it generates ‘1’ or ‘0’ if a fault is injected on one of the
drivers of a line. For this you can use the resolution_table and/or the
resolved function of the std_logic_1164 package.

7.5 Given the following signal assignments, show transactions and
events that expire on each signal. Show timing diagram for time 0 to
350 NS.

ENTITY HLsignals IS END signals;
--
ARCHITECTURE dataflow OF HLsignals IS
 TYPE HL IS ('L', '0', '1', 'H');
 TYPE HL_vector IS ARRAY (HL) OF HL;
 CONSTANT inverse : HL := ('H', '1', '0', 'L');
 SIGNAL a, b : HL;
 SIGNAL c : HL := ‘0’;
BEGIN

 a <= '0', '1' AFTER 20 NS,
 '0' AFTER 120 NS, 'H' AFTER 150 NS;

 b <= '0', 'L' AFTER 65 NS, inverse(c) AFTER 90 NS;
 c <= '1', b AFTER 30 NS, a AFTER 50 NS;
END dataflow;

7.6 Write a resolution function for an n input voter, voting on n
positive bytes inputs. The output will take the byte value that ap-
pears on the majority of the inputs, with a tolerance of t. The toler-
ance allows inputs to be different by this value and still be considered
as equal. This constant is defined in the resolution function.

7.7 Use the f4l type to write a resolution function that is similar to
the wired-or resolution function of Verilog. In addition to the logic
values, wire strengths also play a role in determination of a resolved
value. Strength values that you will use from strongest to weakest
are Supply, Strong, Pull and Weak. Between every two drivers, if
strength values are the same, the ORing resolution is used and the
strength of the result becomes that of the two drivers. If the strengths
are not the same, the logic value of the stronger signal and its
strength value becomes the resulting resolved value. The OR function
for f4l is defined as the usual OR with ‘Z’ treated as logic ‘1’. Write all
types, functions, and arrays that are needed for this resolution. Write
the complete code of this resolution function.

272 Chapter 7

7.8 A resolution function is to add integer drivers that are at least
20 ms old, and at most 50 ms old. The signal, time_stamp, receives
integers from different sources. Integers placed on this signal must be
timed and the resolved value of the signal must be updated every 1
ms or when a new value is assigned to the signal. All assignments are
done with 0 delay values, no AFTER clause. When updating is to oc-
cur, a signal value that is less than 20 ms old, or one that is older
than 50 ms will be ignored and not participate in the adding result of
the resolution function. A) Declare the type you want to use for this
resolved signal. B) Write all types, vectors and declarations necessary
for developing a resolution function for this type. C) Write the
add_between_time resolution function. D) Show examples of assign-
ments to the time_stamp signal or any other signal that uses this
resolution function. E) Show the mechanism for waking up the reso-
lution function every 1 ms.

Suggested Reading
Baker, Louis, VHDL Programming: With Advanced Topics, 1992,

Wiley Professional Computing, John Wiley & Sons Inc, ISBN: 978-
0792390305.

Barnes, John, Programming in Ada 2005, 2006, Addison Wesley,
ISBN: 0321340787.

Bhasker, Jayaram, A VHDL Primer, 3rd edition, 1998, Prentice Hall
PTR, ISBN: 978-0130965752.

Burns, Alan, Andy Wellings, and John Barns, Concurrency in Ada,
2nd edition, 1998, Cambridge University Press, ISBN: 052162911X.

Chu, Pong, RTL Hardware Design Using VHDL: Coding for Effi-
ciency, Portability, and Scalability, 2006, Wiley-IEEE Press,
ISBN: 0471720925.

Cohen, Norman, Ada As A Second Language, 2nd edition, 1995,
McGraw-Hill Science/Engineering/Math, ISBN: 0070116075.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference
Manual, SH94983-TBR (print) SS94983-TBR (electronic), ISBN 0-
7381-3247-0 (print) 0-7381-3248-9 (electronic), 2002.

IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer
Level (RTL) Synthesis, SH95242 (print) SS95242 (electronic),
ISBN 0-7381-4064-3 (print) 0-7381-4065-1 (electronic), 2004.

Lipsett, Roger, and Cary Ussery, VHDL Hardware Description and
Design, 1st edition, 2001, Springer, ISBN: 978-0792390305.

Perry, Douglas L., VHDL: Programming by Example, 4th edition,
2002, McGraw-Hill Professional, ISBN: 978-0071400701.

273

8Hardware Cores and Models

The previous chapters presented the VHDL language syntax, seman-
tics, and simulation model. We presented simple VHDL examples
with the main purpose of demonstrating language constructs or simu-
lation semantics. Combining VHDL language constructs and utilizing
powerful language features for design and description of hardware is
the mission of this chapter.
 This chapter focuses on component descriptions. We discuss cod-
ing styles for simulation, synthesis, and modeling hardware modules.
The styles presented are useful for design of cores and components of
embedded systems. For the sake of scalability, and being of a general
purpose nature, we develop most of the examples of this chapter with
unconstrained input and output types. VHDL attributes and type dec-
larations become useful for such applications.
 Unless specified, models discussed in this chapter are synthesiz-
able. In the first few examples we demonstrate and discuss rules for
synthesis, and will follow these rules in the later examples.

8.1 Synthesis Rules and Styles
This section presents several combinational and sequential examples.
The circuits are synthesizable, and related synthesis rules are pre-
sented as models are discussed.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

274 Chapter 8

8.1.1 Combinational Cores
VHDL constructs for concurrent assignments, sequential bodies, and
component instantiations can be used for describing combinational
circuits. Examples in this section cover these constructs.

8.1.1.1 Concurrent Assignments. A combinational circuit can be de-
scribed by various forms of concurrent signal assignments, i.e., simple
assignments, conditional assignments, and selected signal assign-
ments. In the latter two cases, for combinational circuits, we should
make sure that the assignments do not use the UNAFFECTED wave-
forms or leave conditions unspecified. If so, the unspecified cases
cause the left hand side of the signal assignment to retain its old
value, and thus, creating a latch.
 Figure 8.1 shows an unconstrained magnitude comparator with
equal, greater and less than outputs. Three concurrent conditional
signal assignments handle the three outputs. The assignments assign
‘1’ or ‘0’ to their left hand sides according to their conditions. The
VHDL language allows an ELSE part to be eliminated. If done so, the
negation of the conditional of the if-statement causes the left hand
side value to stay the same, which implies a latch. Since we are deal-
ing with the combinational circuits in this section, obviously a latch is
not desired.
 The VHDL code shown in Figure 8.1 does not specify the ranges
of it’s a and b inputs. These will be determined when the comparator
is instantiated in an upper-level structure. A more robust model of
the comparator would include an assertion statement that would is-
sue a message if the model is instantiated with different size inputs.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY comparator IS
 PORT (a, b: IN std_logic_vector;
 gt, eq, lt: OUT std_logic);
END ENTITY comparator;
--
ARCHITECTURE expression OF comparator IS
BEGIN
 eq <= '1' WHEN (a=b) ELSE '0';
 gt <= '1' WHEN (a>b) ELSE '0';
 lt <= '1' WHEN (a<b) ELSE '0';
END ARCHITECTURE expression;

Figure 8.1 Synthesizable Magnitude Comparator

Hardware Cores and Models 275

 Figure 8.2 shows the entity declaration of the comparator with
an assertion for input size mismatch. If this happens, the comparator
outputs its path name and a corresponding message. Obviously, this
statement does not synthesize, and a synthesis tool either ignores it,
or generator a warning or error message.

ENTITY comparator IS
 PORT (a, b: IN std_logic_vector;
 gt, eq, lt: OUT std_logic);

BEGIN
 ASSERT a'LENGTH = b'LENGTH
 REPORT comparator'PATH_NAME & ". Operand size mismatch";
END ENTITY comparator;

Figure 8.2 Entity Declaration with Assertion

8.1.1.2 Combinational Process Statements. Figure 8.3 shows an
ALU with several arithmetic and logical operations. As with the com-
parator, this circuit is also unconstrained and adjusts itself to its in-
stantiation from an upper-level structure. All operations of this cir-
cuit are unsigned as indicated by the std_logic_unsigned package.
 The procedural architecture of alu shown in Figure 8.3 includes
a process statement that functions as a combinational logic. Opera-
tions of the alu, that are a+b, a-b, a-input, a AND b, and NOT a, are
handled by this process statement.
 The std_logic_unsigned includes overloaded add and subtract
operations that are used in this design. In order to capture the carry
output of the arithmetic operations, result, that is one bit longer than
the actual result needed, is declared and used on the left hand side of
the ALU operations. In case of arithmetic operations, the left-most bit
of result contains the carry. In order to satisfy right and left size re-
quirements of VHDL, ‘0’s are concatenated to the left of a and b oper-
ands to extend their sizes to that of result.
 The body of the process statement of Figure 8.3 has a case
statement that takes care of the operations of the ALU. The last case
alternative is OTHERS that is there to account for unused choices of
the func case expression. Note that since we are using the std_logic
value system, many choices remain unspecified (i.e., those with ‘U’,
‘X’, etc). VHDL requires all choices to be specified in a case statement.

8.1.1.3 Process Combinational Style. In order to make sure a proc-
ess statement that is intended to model a combinational circuit never
implies a latch, two rules must be followed. A process statement fol-
lowing these rules always synthesizes to a combinational circuit.

276 Chapter 8

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY alu IS
 PORT (a, b : IN std_logic_vector;
 add_sub : IN std_logic;
 func : IN std_logic_vector (1 DOWNTO 0);
 y : OUT std_logic_vector;
 gt, eq, lt, co : OUT std_logic);
END ENTITY;
--
ARCHITECTURE procedural OF alu IS
 SIGNAL result : std_logic_vector (a'LENGTH DOWNTO 0);
BEGIN
 PROCESS (a, b, add_sub, func) BEGIN
 CASE func IS
 WHEN "00" =>
 IF (add_sub = '1') THEN
 result <= ('0'&a) - ('0'&b);
 ELSE
 result <= ('0'&a) + ('0'&b);
 END IF;
 WHEN "01" => result <= '0'&a;
 WHEN "10" => result <= ('0'&a) AND ('0'&b);
 WHEN "11" => result <= NOT '1'&a;
 WHEN OTHERS => result <= (OTHERS => '0');
 END CASE;
 END PROCESS;

 UUT1: ENTITY WORK.compartor(expression)
 PORT MAP (a, b, gt, eq, lt);

 y <= result (a'LENGTH - 1 DOWNTO 0);
 co <= result (result'LEFT);
END ARCHITECTURE procedural;

Figure 8.3 Mixed Level ALU

 Rule one has to do with inputs of a process statement. Inputs of a
process are those signals that are used on the right hand side of as-
signments or are read by conditional expressions. The input rule says
that all process inputs must appear on the sensitivity list of the proc-
ess statement. The language semantics of this rule matches perfectly
with the way a combinational logic block works. Namely, a combina-
tional block always processes its body (gates) when an event occurs on
one of its inputs.
 Rule two of combinational process synthesis has to do with proc-
ess left-hand-sides or outputs. Process left-hand-sides are those ob-
jects that receive some value within the process. This rule says that,

Hardware Cores and Models 277

all left-hand side objects must receive some value regardless of the
conditions of the conditional expression, i.e., no signal or variable
should retain its old value when a process is executed from begin to
end. This has to happen no matter what process input conditions are.
There are two ways to implement this rule. One is to check every case
and if-then statement and make sure all left-hand sides (process out-
put signals and variables) always receive some value. Obviously for
large combinational blocks this is a cumbersome task. Alternatively,
we can indiscriminately set all process left-hand sides to their inac-
tive values at the beginning of the process statement. This way, those
signals or variables that receive a value in the body of the process
statement will overwrite their inactive values, and those that do not
receive a value take their inactive values. Therefore no object retains
its old values. Retaining values synthesizes to latches.
 The process statement in Figure 8.3 synthesizes to a combina-
tional logic block. By extending the right hand sides of all assign-
ments in this process (concatenating with ‘0’), we have made sure
that all result bits receive some value regardless of their flow into the
process statement. The process statement of Figure 8.4 uses the al-
ternative implementation of the process left-hand side rule. In this
process statement, we have set all bits of result to 0 at the beginning
of the process statement. This way we can avoid extending bits of
logical operations, (e.g., AND and NOT). The left-most bit of result
that does not get a value for logical operations always gets a ‘0’ at the
beginning of the process statement.

PROCESS (a, b, add_sub, func) BEGIN
 result <= (result'RANGE => '0');
 CASE func IS
 WHEN "00" =>
 IF (add_sub = '1') THEN
 result <= ('0'&a) - ('0'&b);
 ELSE
 result <= ('0'&a) + ('0'&b);
 END IF;
 WHEN "01" => result (7 DOWNTO 0) <= a;
 WHEN "10" => result (7 DOWNTO 0) <= a AND b;
 WHEN "11" => result (7 DOWNTO 0) <= NOT a;
 WHEN OTHERS => result <= (OTHERS => '0');
 END CASE;
END PROCESS;

Figure 8.4 Inactive Process Output Setting

 It is the semantics of the VHDL language that if a signal or a
variable does not receive a value in a process statement, it retains its
old value. It is also the property of a digital circuit that a latch on a

278 Chapter 8

signal causes it to retain its value. Therefore, to the rule two of syn-
thesis of combinational circuits avoids latches in the synthesized cir-
cuits.

8.1.1.4 Instantiation of Other Components. In addition to the proc-
ess statement discussed above, the ALU of Figure 8.3 includes other
concurrent statements that are also part of the combinational alu en-
tity. One such statement is the instantiation of the comparator of
Figure 8.1. This example demonstrates that a hierarchical synthesiz-
able combinational circuit can be made of synthesizable process
statements, instantiation of other synthesizable parts, and synthesiz-
able assignment statements.

8.1.2 Sequential Cores
Synthesizable sequential cores have very simple styles that can be
combined together and with combinational synthesizable styles to
form very complex synthesizable design cores. This section presents
several simple, and yet general, styles for synthesizing sequential
circuits.

8.1.2.1 Using Block Statements. Figure 8.5 shows an n-bit up-down
counter with a clock enable (cen) input and an asynchronous reset
(rst) input. The counter uses the std_logic and the unsigned arithme-
tic packages. Guarded block statements are used for describing this
counter.
 The counter entity specifies counter inputs and outputs in
std_logic type. Like other examples in this chapter, the output is an
unconstrained array that will get its size when instantiated.
 In the blockbased architecture of counter, signal cnt_reg is de-
clared to hold the counter’s internal count. This signal is needed since
the mode of the q output is output that cannot be used on the right
hand side of any expression. We are keeping the counter’s state in
cnt_reg to perform incrementing and decrementing on this signal. The
declaration of cnt_reg uses the range of q, and is declared as a REG-
ISTER kind guarded signal.
 The body of the blockbased architecture has two nested block
statements. The outer statement handles clocking and is labeled cl.
The guard expression of this block is the positive edge of the clk sig-
nal. The inner block statement handles clock enabling and asynchro-
nous reset. This block is labeled en. The enable signal is cen and is
ANDed with the clock edge guard expression. The reason for this
ANDing is clear, and it is because an active high clock enable signal
enables the clock when it is ‘1’ and disables it when ‘0’.

Hardware Cores and Models 279

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY counter IS
 PORT (clk, cen, rst, u_d : IN std_logic;
 q : OUT std_logic_vector);
END ENTITY ;

ARCHITECTURE blockbased OF counter IS
 SIGNAL cnt_reg : std_logic_vector(q'RANGE) REGISTER;
BEGIN
 cl: BLOCK (clk = '1' AND NOT clk'STABLE) BEGIN
 en: BLOCK ((cen = '1' AND GUARD) OR rst = '1') BEGIN
 cnt_reg <= GUARDED
 (cnt_reg'RANGE => '0') WHEN rst = '1' ELSE
 cnt_reg + 1 WHEN u_d = '1' ELSE
 cnt_reg - 1;
 END BLOCK;
 END BLOCK;
 q <= cnt_reg;
END ARCHITECTURE;

Figure 8.5 Counter Using Block Statements

 The guard expression of the en block also includes the asynchro-
nous rst signal. This signal is ORed with the rest of the guard expres-
sion since it acts independent of the clock (asynchronous). As a result,
the expression of the guard signal within the en block becomes the
edge of the clock AND with clock enable ORed with the reset. There-
fore a guarded signal assignment in this block connects if rst is ‘1’ or
if clock edge is seen and cen is ‘1’. Clearly, this is asynchronous reset
behavior as planned.
 The guarded signal assignment in the en block sets cnt_reg to
zero when rst is ‘1’, and it counts up or down when rst is not active.
 The code discussed above is synthesizable and follows styles pre-
sented in the VHDL 1076.6 RTL synthesis subset.
 If OR rst = ‘1’ is removed from the guard expression of the en
block, the counter reset becomes synchronous. An asynchronous or
synchronous preset signal can be added in a similar fashion. A syn-
chronous parallel load feature can also be added to this style by in-
cluding it in the condition that comes on the right-hand side of
cnt_reg. In this example we have used two nested blocks. Perhaps a
better style would have been to write a third block for rst, in which
the guard signal would be ORed with rst. The choice of combining
block statements or writing one for every feature of the counter or
register structure is entirely upon the designer and his or her taste.

280 Chapter 8

 Before we leave this topic, it is worth spending a few minutes on
the use of (OTHERS => ‘0’) versus (xarray’RANGE => ‘0’) for expand-
ing an enumeration element, e.g., ‘0’ to the size of an array, e.g., xar-
ray. These constructs have been used in several occasions in the ex-
amples that we have discussed. When used on the right-hand side of
an assignment, the type of the former construct will be determined
based on that of the left-hand side. However, if this is used in an ex-
pression, the VHDL compiler will not be able to determine its type.
On the other hand the latter construct (xarray’RANGE => ‘0’) can be
used on the right hand side of an assignment, in an expression, or
any where a typed object may appear. Although the ‘RANGE con-
struct does not have the type mismatch issues OTHERS might have,
it cannot include other enumeration elements and cannot be com-
bined with other named associations as OTHERS can.

8.1.2.2 Process Statement for Sequential Logic. Another method of
describing sequential circuits is by use of process statements. Figure
8.6 shows the VHDL description of a universal shift-register. The cir-
cuit has a parallel load (ld), synchronous reset (rst), left and right
shift (l_r), shift enable (shen), serial input (s_in), and tri-state output
enable (oe). The dio port of the shift_reg entity is the circuits bidirec-
tional input and output port. The VHDL description of this shift-
register is unconstrained, uses std_logic, and uses the unsigned pack-
age of the IEEE arithmetic package.
 The synch architecture of shift_reg uses parout signal to hold the
register contents of the shift register. This signal is declared as an
std_logic array of the same size as the shift-register input-output
port, dio. Within the process statement, parout is set to 0, loaded with
dio, or shifted right or left.
 The process statement shown in Figure 8.6 uses clk in its sensi-
tivity list. The first statement in this sequential body detects the ris-
ing edge of the clk signal. Since the sensitivity list already detects clk
events, the use of clk’EVENT in the condition of the if-statement is
not essential. However, for compatibility with some older synthesis
tools and flexibility of the model, use of this expression is recom-
mended.
 Alternatively, rising_edge or falling_edge functions of the
std_logic_1164 package can be used for the clock condition. Since all
active assignments to parout take place within the if-statement with
the clock edge condition, all shift-register activities are synchronous.

Hardware Cores and Models 281

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY shift_reg IS
 PORT (clk, ld, rst, l_r, shen, s_in, oe : IN std_logic;
 dio : INOUT std_logic_vector);
END ENTITY;
--
ARCHITECTURE synch OF shift_reg IS
 SIGNAL parout : std_logic_vector (dio'RANGE)
 := (OTHERS => '0');
BEGIN
 PROCESS (clk)
 CONSTANT li : INTEGER := dio'LEFT;
 BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF (rst = '1') THEN
 parout <= (OTHERS => '0');
 ELSIF (ld = '1') THEN
 parout <= dio;
 ELSIF (shen = '1') THEN
 IF (l_r = '1') THEN
 parout <= parout (li-1 DOWNTO 0) & s_in;
 ELSE
 parout <= s_in & parout (li DOWNTO 1);
 END IF;
 ELSE
 parout <= parout; -- Not needed
 END IF;
 END IF;
 END PROCESS;
 dio <= parout WHEN (oe='1') AND (ld='0') ELSE
 (dio'RANGE => 'Z');
END ARCHITECTURE synch;

Figure 8.6 Shift-register Using Process Statement

 The last statement before the end of the architecture of Figure
8.6, is a conditional signal assignment that puts parout shift-register
contents on the dio if oe is ‘1’ and ld is ‘0’. We are making sure that
the ld input is ‘0’, because if dio is externally driven for loading, we
want to make sure that our architecture does not drive this same
bidirectional port. When not driven with parout, the conditional sig-
nal assignment mentioned above drives dio with all ‘Z’s.

8.1.2.3 Asynchronous Control. As mentioned, the process in Figure
8.6 implements an asynchronous reset input, because all activities
are controlled by the clock edge condition. Figure 8.7 shows the
asynch architecture of shift_reg in which the process statement uses

282 Chapter 8

rst as an asynchronous reset input. The two differences between this
architecture and that of Figure 8.6 are: 1) the rst reset signal is in-
cluded in the process sensitivity list, and 2) the rst condition check is
precedes the clock edge detection. The combination of these two
causes the process to wake up when rst changes, and when such hap-
pens and rst has become ‘1’, parout is set to OTHERS => ‘0’.

ARCHITECTURE asynch OF shift_reg IS
 SIGNAL parout : std_logic_vector (dio'RANGE)
 := (OTHERS => '0');
BEGIN
 PROCESS (clk, rst)
 CONSTANT li : INTEGER := dio'LEFT;
 BEGIN
 IF (rst = '1') THEN
 parout <= (OTHERS => '0');
 ELSIF (clk = '1' AND clk'EVENT) THEN
 IF (ld = '1') THEN
 parout <= dio;
 ELSIF (shen = '1') THEN
 IF (l_r = '1') THEN
 parout <= parout (li-1 DOWNTO 0) & s_in;
 ELSE
 parout <= s_in & parout (li DOWNTO 1);
 END IF;
 ELSE
 parout <= parout; -- Not needed
 END IF;
 END IF;
 END PROCESS;
 dio <= parout WHEN (oe='1') AND (ld='0') ELSE
 (dio'RANGE => 'Z');
END ARCHITECTURE asynch;

Figure 8.7 Asynchronous Reset

8.1.2.4 Process Statement Sequential Circuit Synthesis. The above
presented an example using a process statement representing a se-
quential circuit. Although the shift-register circuit is not a very com-
plex hardware, the style we discussed applies to general sequential
circuits. What follows summarizes the style used for the shift-register
into a set of guidelines for sequential circuit synthesis.
 A process statement that is to synthesize to a sequential circuit
must include the clock signal in its sensitivity list. For asynchronous
control, the corresponding signals must also appear in the process
sensitivity list. A process statement for sequential circuit synthesis
must include a conditional statement using the clock edge as its con-
dition. For asynchronous control, conditions based on asynchronous
signals must come before the clock condition. The body of the process

Hardware Cores and Models 283

statement must include assignments to the register output of the
process statement. It is recommended that a process statement only
includes one left hand side signal. Such a signal becomes the register
output of the process statement. If multiple register outputs (two left-
hand sides) are to be used, they should be independent. That is, one
should not appear in an expression on the right hand side of another.
 The above guidelines are simple to follow and are unambiguous
as far as the circuit that is implied. The standard VHDL 1076.6 refer-
ence discusses other more general synthesis styles.

8.1.3 Finite State Machines
Coding styles presented in Sections 8.1.1 and 8.1.2 for combinational
and sequential circuits can be combined to describe finite state ma-
chines and controller circuits. Since sequence detectors are good ex-
amples of controllers and finite-state machines (FSM), the examples
in this section are various forms of sequence detectors.

8.1.3.1 Moore Machines. A Moore machine is a state machine in
which all outputs are fully synchronized with the circuit clock. In the
state diagram form, each state of the machine specifies its output(s)
independent of circuit inputs. In the VHDL code of a Moore machine,
only circuit states participate in the output expression of the circuit.

Figure 8.8 shows a 101 Moore sequence detector with its corre-
sponding block diagram related to its VHDL coding. The dark gray
box signifies a process statement and the lighter box represents a
concurrent signal assignment. The machine searches for 101 on its
input and when received, the output of the circuit becomes 1 and re-
mains at this level for a complete clock period. As shown in the state
diagram, when the machine reaches the got101 state, its output be-
comes 1.

Figure 8.8 A Moore 101 Detector

284 Chapter 8

In the VHDL code of this machine a process statement handling
state transitions and clocking, generates current state of the machine.
This variable is used by a concurrent signal assignment that gener-
ates the z output of the circuit.

Figure 8.9 shows the VHDL code of moore_detector. We have
used an enumeration type declaration to declare the states of the ma-
chine. Type state has reset, got1, got10, and got101 enumeration ele-
ments. The current signal that holds the state of our state machine is
declared as a signal of type state and is initialized to reset. The reset
initial state is only for simulation and has no synthesis significance.
Since we have four states, a VHDL synthesis tool will use two state
variables (i.e., two flip flops) for the states of the machine.

ENTITY moore_detector IS
 PORT (x, rst, clk : IN std_logic; z : OUT std_logic);
END ENTITY ;
--
ARCHITECTURE procedural OF moore_detector IS
 TYPE state IS (reset, got1, got10, got101);
 SIGNAL current : state := reset;
BEGIN
 PROCESS (clk) BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF rst = '1' THEN
 current <= reset;
 ELSE
 CASE current IS
 WHEN reset =>
 IF x = '1' THEN current <= got1;
 ELSE current <= reset; END IF;
 WHEN got1 =>
 IF x = '0' THEN current <= got10;
 ELSE current <= got1; END IF;
 WHEN got10 =>
 IF x = '1' THEN current <= got101;
 ELSE current <= reset; END IF;
 WHEN got101 =>
 IF x = '1' THEN current <= got1;
 ELSE current <= got10; END IF;
 WHEN OTHERS => current <= reset;
 END CASE;
 END IF;
 END IF;
 END PROCESS;
 z <= '1' WHEN current = got101 ELSE '0';
END ARCHITECTURE;

Figure 8.9 Moore Machine VHDL Code

Hardware Cores and Models 285

The process statement in Figure 8.9 implements a positive edge
trigger sequential block with a synchronous reset (rst) input. If rst is
active, current is set to reset, otherwise, a case statement assigns next
state values to current. Next states of the machine are decided by the
current state that is the case expression, and input values.

Each state of the machine is implemented by a case alternative,
and its next state transitions are implemented by if statements condi-
tioned by the x input of the circuit. Figure 8.10 shows a correspon-
dence between the got10 state of the machine and its VHDL code.
This state branches out to got101 or reset depending on x. The output
of the circuit is implemented by a separate concurrent conditional
signal assignment statement that puts a ‘1’ on z when current is
got101.

Figure 8.10 VHDL Code Correspondence with the got10 State

Because this is a Moore machine, the condition for asserting the
output of the circuit only includes the current variable, and circuit
input(s) are not included.

Figure 8.11 shows another Moore machine example. This ma-
chine searches for 110 or 101 sequences on its x input. The search
allows overlapping sequences.

8.1.3.2 Mealy Machines. A Mealy machine is different from a Moore
machine in that its output depends on its current state and inputs
while in that state. State transitions and clocking and resetting the
machine are no different from those of a Moore machine, and the
same coding techniques are used for describing them.

Figure 8.11 shows a 101 Mealy sequence detector and its corre-
sponding VHDL code block diagram. This circuit has an asynchro-
nous rst input that resets the machine to its reset state.

286 Chapter 8

Figure 8.11 A 101 Mealy Machine

ENTITY mealy_detector2 IS
 PORT (x, clk, rst : IN std_logic; z : OUT std_logic);
END ENTITY mealy_detector2;
--
ARCHITECTURE procedural OF mealy_detector2 IS
 TYPE state IS (reset, got1, got10);
 SIGNAL current : state := reset;
BEGIN
 PROCESS (clk, rst) BEGIN
 IF rst = '1' THEN
 current <= reset;
 ELSIF (clk = '1' AND clk'EVENT) THEN
 CASE current IS
 WHEN reset =>
 IF x = '1' THEN current <= got1;
 ELSE current <= reset; END IF;
 WHEN got1 =>
 IF x = '1' THEN current <= got1;
 ELSE current <= got10; END IF;
 WHEN got10 =>
 IF x = '1' THEN current <= got1;
 ELSE current <= reset; END IF;
 WHEN OTHERS => current <= reset;
 END CASE;
 END IF;
 END PROCESS;
 z <= '1' WHEN (current = got10 AND x = '1') ELSE '0';
END ARCHITECTURE;

Figure 8.12 Mealy Machine VHDL Code

Hardware Cores and Models 287

The VHDL code of Figure 8.12 corresponds to this Mealy ma-
chine. Type state is declared as an enumeration type having reset,
got1 and got10 enumeration elements. This type is used to declare
current that represents the state of the machine. For simulation,
since current can only take reset, got1 and got10, the use of OTHERS
=> as the last case alternative is not essential. However, after syn-
thesis regardless of the coding technique for state assignments, e.g.,
encoded, binary, or one-hot, there will be unused states. Because of
the use of OTHERS => ..., the synthesis tool synthesizes the circuit so
that if an invalid state occurs, the current state always becomes reset.
 The use of OTHERS => … as the last case alternative for state
machine coding is always recommended. In simulation, this last case
alternative never happens. In the actual circuit (post synthesis), the
last case alternative makes provisions so that if an unspecified state
occurs, the circuit always reset to its reset state. The default case al-
ternative does not result in extra hardware in the synthesized circuit,
if the machine does not have unused states.

The coding of the states and output of this machine are illus-
trated in Figure 8.13. Each state is specified by a case alternative of a
case statement for which current is its case expression. Transitions to
the next states of the machine are handled by if-then-else statements.
The output of the machine is set to ‘1’ using a conditional signal as-
signment. The condition part of this assignment uses the circuit’s in-
put as well as the current state of the machine.

Figure 8.13 Mealy State and Output Coding

8.1.3.3 Huffman Coding Style. The Huffman model for a digital sys-
tem characterizes it as a combinational block with feedbacks through
an array of registers. According to the Huffman model, VHDL coding
of digital systems uses a process statement for describing the register
part and another concurrent statement for describing the combina-

288 Chapter 8

tional part. This coding style and the Moore machine example that we
will use in this section are shown in Figure 8.14. As shown, the com-
binational block uses x and p_state as input and generates z and
n_state. The register block clocks n_state into p_state, and resets
p_state when rst is active.

Figure 8.14 Huffman Style of Coding a State Machine

Figure 8.15 shows the VHDL code of the state diagram of Figure
8.14 according to the partitioning shown. In this code, type state is
declared to represent the states of the machine. Following this decla-
ration, n_state and p_state variables are declared as signals of type
state. The p_state signal holds the present state of the machine and
corresponds to state register outputs of the circuit. The n_state signal
represents the input of the state register.

The combinational process statement appears in the procedural
architecture of our moore_detector4 entity. Since this is a purely com-
binational block, it is sensitive to all its inputs, namely x and p_state.
Immediately following the process BEGIN, n_state and z are set to
their inactive or reset values. This is done so that these variables are
always refreshed with new values and never retain their old values.
As discussed before, retaining old values implies latches, which is not
what we want in our combinational block.

The body of the combinational process of Figure 8.15 contains a
case-statement that uses the p_state input of the process for its case-
expression. This expression is checked against the states of the Moore
machine. As in the other styles discussed before, this case-statement
has case-alternatives for reset, got1, got10, and got101 states. In addi-
tion, an OTHERS case-alternative sets n_state to reset.

Hardware Cores and Models 289

ENTITY moore_detector4 IS
 PORT (x, rst, clk : IN std_logic; z : OUT std_logic);
END ENTITY ;
--
ARCHITECTURE procedural OF moore_detector4 IS
 TYPE state IS (reset, got1, got10, got101);
 SIGNAL p_state, n_state : state;
BEGIN
 combinational: PROCESS (p_state, x) BEGIN
 n_state <= reset;
 z <= '1';
 CASE p_state IS
 WHEN reset =>
 IF x = '1' THEN n_state <= got1;
 ELSE n_state <= reset; END IF;
 z <= '0';
 WHEN got1 =>
 IF x = '0' THEN n_state <= got10;
 ELSE n_state <= got1; END IF;
 z <= '0';
 WHEN got10 =>
 IF x = '1' THEN n_state <= got101;
 ELSE n_state <= reset; END IF;
 z <= '0';
 WHEN got101 =>
 IF x = '1' THEN n_state <= got1;
 ELSE n_state <= got10; END IF;
 z <= '1';
 WHEN OTHERS =>
 n_state <= reset;
 z <= '0';
 END CASE;
 END PROCESS combinational;

 sequential: PROCESS (clk) BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF rst = '1' THEN p_state <= reset;
 ELSE
 p_state <= n_state;
 END IF;
 END IF;
 END PROCESS sequential;
END ARCHITECTURE;

Figure 8.15 Moore Detector VHDL Code According to Huffman Model

In the code portion corresponding to a particular case-
alternative, based on input values, values are assigned to n_state and
z output. Unlike the other styles where current is used for the present
and next states, here we use two different variables, p_state and
n_state.

290 Chapter 8

The sequential process shown in Figure 8.15 handles the register
part of the Huffman model of Figure 8.14. In this part, n_state is
treated as the register input and p_state as its output. On the positive
edge of the clock, p_state is either set to the reset state or is loaded
with contents of n_state. Together, combinational and sequential
blocks describe our state machine in a very modular fashion.

The advantage of this style of coding is in its modularity and de-
fined tasks of each process. State transitions are handled by the com-
binational process and clocking is done by the sequential process.
Changes in clocking, resetting, enabling or presetting the machine
only affect the coding of the sequential process. If we were to change
the synchronous resetting to asynchronous, the only change we had to
make was adding rst to the sensitivity list of the sequential process.

8.1.3.4 A More Modular State Machine Coding Style. For a design
with more input and output lines and more complex output logic, the
combinational process may further be partitioned into a process for
handling transitions and another for assigning values to the outputs
of the circuit. For coding both of these processes, it is necessary to
follow the rules discussed for combinational processes earlier in this
section. Figure 8.16 shows a block diagram of this style and a Mealy
sequence detector that we will use for illustrating this coding style.

Figure 8.16 Using Three Separate Blocks for Describing a State Machine

Figure 8.17 shows the VHDL code for a Mealy machine that de-
tects a sequence of 110 on its x input. This code uses two separate
processes for assigning values to n_state and the z output. In a situa-
tion like what we have in which the output logic is fairly simple, a
simple concurrent assignment could replace the output_block combi-
national process statement.

Hardware Cores and Models 291

ENTITY mealy_detector6 IS
 PORT (x, en, clk, rst : IN std_logic;
 z : OUT std_logic);
END ENTITY mealy_detector6;
--
ARCHITECTURE procedural OF mealy_detector6 IS
 TYPE state IS (reset, got1, got11, got10);
 SIGNAL p_state, n_state : state;
BEGIN
 PROCESS (p_state, x) BEGIN
 CASE p_state IS
 WHEN reset =>
 IF x = '1' THEN n_state <= got1;
 ELSE n_state <= reset; END IF;
 WHEN got1 =>
 IF x = '1' THEN n_state <= got11;
 ELSE n_state <= got10; END IF;
 WHEN got11 =>
 IF x = '0' THEN n_state <= got10;
 ELSE n_state <= got11; END IF;
 WHEN got10 =>
 IF x = '1' THEN n_state <= got1;
 ELSE n_state <= reset; END IF;
 WHEN OTHERS => n_state <= reset;
 END CASE;
 END PROCESS;

 PROCESS (p_state, x) BEGIN
 CASE p_state IS
 WHEN reset => z <= '0';
 WHEN got1 => z <= '0';
 WHEN got11 => IF x = '1' THEN z <= '0';
 ELSE z <= '1'; END IF;
 WHEN got10 => IF x = '1' THEN z <= '1';
 ELSE z <= '0'; END IF;
 WHEN OTHERS => z <= '0';
 END CASE;
 END PROCESS;

 PROCESS (clk) BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF rst = '1' THEN p_state <= reset;
 ELSE
 IF en = '1' THEN
 p_state <= n_state;
 END IF;
 END IF;
 END IF;
 END PROCESS;
END ARCHITECTURE;

Figure 8.17 A Mealy Machine Using Three Sequential Processes

292 Chapter 8

The examples discussed above, in particular, the last two styles,
show how combinational and sequential coding styles can be com-
bined to describe very complex digital systems.

8.2 Memory and Queue Structures
This section discusses VHDL code for general purpose stack and
FIFO cores. We start with a general purpose unclocked memory
structure and then use this memory in a stack. Next we show design
of a FIFO using a clocked register file. The techniques developed in
this section can be used for development of various memory and data
structures such as dual port memories and content addressable cores.

8.2.1 Generic RAM Core
Section 6.1 presented an unconstrained RAM with procedure for read-
ing and dumping from and to external files. We used our example
type v4l and file handling primitives for the memory model of Chap-
ter 6. A general purpose model using std_logic and TEXTIO packages
is presented here. We rely on the discussion of Chapter 6 for the de-
tails of this model.
 Figure 8.18 shows init_mem and dump_mem procedures that use
TEXTIO read and write utilities. The memory passed to these proce-
dures in a two-dimensional array of std_logic. File type used by these
procedures is TEXT. The init_mem procedure reads a std_logic_vector
of the size of the second index of the memory from its stddata file and
places the vector data into the memory one bit at a time. For writing,
the dump_mem procedure reads data bits from the memory into
stdvalue variable, and writes them into LINE type buffer, l. When all
bits of word are written, a call to WRITELINE writes l to the external
file.

PROCEDURE init_mem (VARIABLE memory: OUT mem;
 CONSTANT datafile: STRING) IS
 FILE stddata : TEXT;
 VARIABLE l : LINE;
 VARIABLE data : std_logic_vector(memory'RANGE(2));
 BEGIN
 FILE_OPEN (stddata, datafile, READ_MODE);
 FOR i IN memory'RANGE(1) LOOP
 READLINE (stddata, l); READ (l, data);
 FOR j IN memory'REVERSE_RANGE(2) LOOP
 memory (i,j) := data(j);
 END LOOP;
 END LOOP;
END PROCEDURE init_mem; -- Continued

Hardware Cores and Models 293

PROCEDURE dump_mem (VARIABLE memory: IN mem;
 CONSTANT datafile: STRING) IS
 FILE stddata : TEXT;
 VARIABLE stdvalue : std_logic;
 VARIABLE l : LINE;
BEGIN
 FILE_OPEN (stddata, datafile, WRITE_MODE);
 FOR i IN memory'RANGE(1) LOOP
 FOR j IN memory'REVERSE_RANGE(2) LOOP
 stdvalue := memory (i, j);
 WRITE (l, stdvalue);
 END LOOP;
 WRITELINE (stddata, l);
 END LOOP;
END PROCEDURE dump_mem;

Figure 8.18 TEXTIO Based Memory init and dump Procedure

USE IEEE.std_logic_TEXTIO.ALL;
ENTITY std_logic_ram IS
 PORT (address : IN std_logic_vector;
 datain, dataout : OUT std_logic_vector;
 cs, rwbar : IN std_logic; opr : IN BOOLEAN);
END ENTITY std_logic_ram;
--
ARCHITECTURE behavioral OF std_logic_ram IS
 TYPE mem IS ARRAY (NATURAL RANGE <>,
 NATURAL RANGE <>) of std_logic;
BEGIN
 PROCESS
 CONSTANT memsize : INTEGER := 2**address'LENGTH;
 VARIABLE memory : mem (0 TO memsize-1, datain'RANGE);
 BEGIN
 id: IF opr'EVENT THEN
 IF opr=TRUE THEN init_mem (memory, "memdata.dat");
 ELSE dump_mem (memory, "memdump.dat"); END IF;
 END IF;
 wr: IF cs = '1' THEN
 IF rwbar = '0' THEN -- Writing
 FOR i IN dataout'RANGE LOOP
 memory(conv_integer(address),i):=datain (i);
 END LOOP;
 ELSE -- Reading
 FOR i IN datain'RANGE LOOP
 dataout(i)<=memory(conv_integer(address),i);
 END LOOP;
 END IF;
 END IF;
 WAIT ON cs, rwbar, address, datain, opr;
 END PROCESS;

Figure 8.19 Std_logic Unconstrained Memory

294 Chapter 8

 Figure 8.19 shows our general purpose RAM model using the
std_logic package. The process statement in the body of the behav-
ioral architecture of std_logic_ram has a sequential statement that is
labeled id. This statement is responsible for initialization and dump,
the wr statement in this process statement performs writing and
reading of the memory.

8.2.2 Synthesizable Push-Pop Stack
 Figure 8.20 shows a stack controller that together with instantiation
of the memory of Figure 8.19 becomes a generic size general purpose
synthesizable stack core model.

ENTITY stack IS
 GENERIC (max: std_logic_vector := "101111");

 PORT (STin : IN std_logic_vector;
 clk, push, pop : IN std_logic; opr : IN BOOLEAN;
 STout : OUT std_logic_vector;
 empty, full : OUT std_logic);
END ENTITY stack;
--
ARCHITECTURE behavioral OF stack IS

 SIGNAL ramin, ramout : std_logic_vector (STin'RANGE);
 SIGNAL ramaddr, pntr : std_logic_vector (max'RANGE)
 := (OTHERS => '0');
 SIGNAL cs, rwbar, full_temp : std_logic:= '0';
 SIGNAL empty_temp : std_logic:= '1';

BEGIN

 -- UPDATING PNTR
 -- POP/PUSH
 -- INSTANTIATE MEMORY
 -- HANDLING EMPTY AND FULL

END ARCHITECTURE behavioral;

Figure 8.20 Stack Controller Outline

 The stack controller takes push and pop commands and prepares
its pntr to point to locations in its instantiated RAM. As shown in
Figure 8.20, our stack has an unconstrained STin input and a max
generic parameter that sets the maximum size of the stack. The stack
architecture defines RAM input and output (ramin and ramout) as
std_logic_vectors of the size and range of STin. The address size of the
RAM is set as the range of the max generic parameter. The value of

Hardware Cores and Models 295

the max generic parameter specifies the size of the stack memory,
and its range defines the memory block size used for the stack. Speci-
fying a number that is not all 1’s for the value of max means that not
all words of the memory block allocated for the stack will be used.
The max parameter value is used to set the stack full flag.

The behavioral architecture of the stack shown in Figure 8.20
has two process statements for updating the stack pointer, and pop
and push operations. It has an instantiation statement for instantiat-
ing the memory, and a part for handling empty and full flags.
 Figure 8.21 shows the update_pntr process statement. This is a
sequential clocked process statement that decrements or increments
pntr depending on pop and push inputs. The pntr register has a syn-
chronous rst reset input.

-- UPDATING PNTR
Update_pntr: PROCESS (clk)
BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF pop = '1' THEN
 IF empty_temp /= '1' THEN
 pntr <= pntr - 1;
 END IF;
 ELSIF push = '1' THEN
 IF full_temp /= '1' THEN
 pntr <= pntr + 1;
 END IF;
 END IF;
 END IF;
END PROCESS;

Figure 8.21 Stack Pointer Update

 Figure 8.22 shows a process statement for issuing memory read
and write signals, and for setting proper data and address on the
memory data and address ports. Since this is a combinational proc-
ess, all process inputs are included on the sensitivity list, and all
process outputs are set to their inactive values at the beginning of the
process. When pop is issued, the memory is read from pntr_1 and is
made available on STout. While pop is active, the next clock edge
changes the pntr value, that makes the stack output for pop invalid.
An external device using our stack core should read the stack output
for pop on the first clock edge after pop is issued.
 When push is issued, pntr value goes on ramaddr and memory
write is done. While push is active the next clock edge changes the
pointer value. The device using our stack core must deassert the push
input of the stack immediately after the first clock edge. The timing

296 Chapter 8

requirement of push and pop operations could be more relaxed if in-
put and output of the memory, or its address bus were registered.

-- POP/PUSH

pop_push: PROCESS (pop, push ,STin, ramout, pntr)
BEGIN
 ramaddr <= (OTHERS => '0');
 cs <= '0';
 rwbar <= '1';
 ramin <= (OTHERS => '0');
 STout <= (STin'RANGE => '0');
 IF (pop = '1' AND empty_temp = '0') THEN
 ramaddr <= pntr - 1;
 cs <= '1';
 rwbar <= '1';
 STout <= ramout;
 ELSIF (push = '1' AND full_temp = '0') THEN
 ramaddr <= pntr;
 cs <= '1';
 rwbar <= '0';
 ramin <= STin;
 END IF;
END PROCESS pop_push;

Figure 8.22 Pop_push Process

Figure 8.23 shows the last part of the code of the stack controller.

In this code, an instantiation statement instantiates the
std_logic_ram entity, and concurrent assignment statements issue
empty and full stack output flags.

-- INSTANTIATE MEMORY

 UU1: ENTITY WORK.std_logic_ram (behavioral)
 PORT MAP (ramaddr, ramin, ramout, cs, rwbar, opr);

-- HANDLING EMPTY AND FULL

 empty_temp <= '1' WHEN (pntr = (pntr'RANGE => '0'))
 ELSE '0';
 full_temp <= '1' WHEN (pntr = max) ELSE '0';

 empty <= empty_temp;
 full <= full_temp;

Figure 8.23 RAM Instantiation and empty and full Flags

Hardware Cores and Models 297

8.2.3 Synthesizable Circular FIFO
Figure 8.24 shows a circular FIFO. This memory structure has read
and write pointers that keep track of data in FIFO. When read and
write pointers are equal, FIFO is empty. A read operation causes the
read pointer to be incremented. Writing into FIFO, causes the write
pointer to be incremented. When the write pointer is one position be-
hind the read pointer, the stack is full. Finally, while incrementing
the read or the write pointer, if it reaches its maximum count (2n-1 for
an n-bit counter), it rolls over and becomes 0. This effectively makes
it looks like the FIFO is going around a circle, thus a circular FIFO.
We use a FIFO size that is a power-of-two in order to make the roll-
over implement easier.

Figure 8.24 Circular FIFO

 The outline of the VHDL code of FIFO is shown in Figure 8.25.
The size of the FIFO is given to it as generic parameters. We have
used a binary number for the size of the FIFO, and since this number
must be a power of two, only its most significant bit is ‘1’. The size of
the FIFO read and write pointers are calculated from the length of
the fifo_size parameter.
 The procedural architecture of fifo_unconst calculates fsz, asz,
and wsz for the FIFO size, address size, and word size, respectively.
In this architecture, the fifo_ram signal represents the FIFO register
structure. This is a clocked memory of fsz size with wsz bits wide
words. Signals rd_ptr and wr_ptr are declared for the read and write
pointers. The size of these pointers is asz that is the size of the ad-
dress bus of FIFO.
 The body of the FIFO architecture of Figure 8.25 has three proc-
esses for write, read, and pointer setting. In addition, there are signal
assignments for setting empty and full flags. The three processes are
clocked and described below. Figure 8.26 shows a block diagram of
this FIFO showing read, write, and pointer processes. We are also
showing the fifo_ram and a block for empty and flags.

298 Chapter 8

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY fifo_unconst IS

 GENERIC (fifo_size : std_logic_vector := "1000");

 PORT (data_in : IN std_logic_vector;
 clk : IN std_logic;
 rst, rd, wr : IN std_logic;
 empty, full : OUT std_logic;
 data_out : OUT std_logic_vector);

END ENTITY ;
--
ARCHITECTURE procedural OF fifo_unconst IS

 CONSTANT fsz : INTEGER := conv_integer (fifo_size);
 CONSTANT asz : INTEGER := fifo_size'LENGTH - 1;
 CONSTANT wsz : INTEGER := data_in'LENGTH; --word_size;

 TYPE memory IS ARRAY (NATURAL RANGE <>) OF
 std_logic_vector (wsz-1 DOWNTO 0);
 SIGNAL fifo_ram : memory (0 TO fsz-1);

 SIGNAL rd_ptr, wr_ptr : std_logic_vector(asz-1 DOWNTO 0)
 := (OTHERS => '0');
 SIGNAL full_temp, empty_temp : std_logic;
BEGIN

-- WRITE

-- READ

-- POINTER

 empty_temp <= '1' WHEN (rd_ptr=wr_ptr) ELSE '0';
 full_temp <= '1' WHEN (rd_ptr=wr_ptr + 1) ELSE '0';

 empty <= empty_temp;
 full <= full_temp;

END ARCHITECTURE;

Figure 8.25 FIFO VHDL Code Outline

Hardware Cores and Models 299

Figure 8.26 FIFO Block Diagram

8.2.3.1 Clocked Memory Writing. The write process shown in Figure
8.27 handles writing of data into the FIFO clocked memory. Because
fifo_ram is assigned data within a process statement that is sensitive
to the clock and the clock edge is detected, it synthesizes as a clocked
memory. Writing into fifo_ram is done at the location of wr_ptr.

8.2.3.2 Clocked Memory Reading. The read process shown in
Figure 8.28 reads fifo_ram at rd_ptr locations and loads them into
data_out. Obviously, reading fifo_ram does not require a clock. How-
ever, because the read operations take place in a clocked process, the
left hand side to which the memory is assigned, i.e., data_out, be-
comes a clocked register.

300 Chapter 8

write : PROCESS (clk) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (wr='1' AND full_temp='0') THEN
 fifo_ram (conv_integer (wr_ptr)) <= data_in;
 ELSIF (wr='1' AND rd='1') THEN
 fifo_ram (conv_integer (wr_ptr)) <= data_in;
 END IF;
 END IF;
END PROCESS;

Figure 8.27 Clocked Writing: fifo_ram

read : PROCESS (clk) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (rd='1' AND empty_temp='0') THEN
 data_out <= fifo_ram (conv_integer (rd_ptr));
 ELSIF (rd='1' AND wr='1' AND empty_temp='1') THEN
 data_out <= fifo_ram (conv_integer (rd_ptr));
 END IF;
 END IF;
END PROCESS;

Figure 8.28 Clocked Reading: fifo_ram

pointer : PROCESS (clk) BEGIN

 IF (clk='1' AND clk'EVENT) THEN
 IF rst='1' THEN
 wr_ptr <= (OTHERS => '0');
 rd_ptr <= (OTHERS => '0');
 ELSE
 IF (wr='1' AND full_temp='0') OR
 (wr='1' AND rd='1') THEN
 wr_ptr <= wr_ptr+1;
 ELSE
 wr_ptr <= wr_ptr;
 END IF;
 IF (rd='1' AND empty_temp='0') OR
 (wr='1' AND rd='1') THEN
 rd_ptr <= rd_ptr+1;
 ELSE
 rd_ptr <= rd_ptr;
 END IF;
 END IF;
 END IF;
END PROCESS;

Figure 8.29 Updating FIFO Pointers

Hardware Cores and Models 301

8.2.3.3 Multiple Clocked Register Process. The pointer process
shown in Figure 8.29 handles rd_ptr and wr_ptr counters. The pointer
process is referenced as a comment in Figure 8.25 and as a block in
the diagram of Figure 8.26. This process is a clocked process that in-
crements wr_ptr and/or rd_ptr depending on the states of wr and rd
inputs. Normally, for synthesis, we would use two separate processes
for the two counters. However, since these counters are independent,
combining them into a single process does not cause a problem or am-
biguity in synthesizing the process.
 This concludes the discussion of our synthesizable FIFO descrip-
tion. Note that we tried to design this FIFO as generic as possible.
However, it is possible that same synthesis tools cannot recognize the
generic parameters and the use of these parameters in type defini-
tions. In such situations, constants should be used instead of the ge-
neric parameters.

8.2.4 Dynamic Access Type FIFO
In system level designs, and higher than RT level designs, it may be
necessary to use a memory structure or arithmetic unit for evaluation
of system performance. In such applications, the exact size of a hard-
ware part may not be known initially, and depending on the required
performance, the size and configuration of the structure and its RT
level details may be decided.
 A specific example of this scenario is the FIFOs in a transaction
level modeling (TLM), or FIFOs in Network-on-Chip (NoC) switches.
An NoC consists of an array of processing elements and switches.
Network switches communicate data packets between processing
elements. A switch uses FIFOs to buffer input and output data and to
route data to switch ports where data is intended. An NoC design
may involve configuration of switch FIFOs so that switch traffic is
minimized and network performance is optimized.
 In such applications, we may want to use a high level FIFO de-
scription that can easily be optimized, and that will not impose any
size limitations on the overall system design. In a similar situation an
arithmetic unit may need to be evaluated and its exact configuration
determined in a high level system design environment, before decid-
ing on its RT level details.
 For scenarios like what is described above, VHDL access types
can be used for describing dynamic structures such as FIFOs and
arithmetic or floating point processors. This section discusses an ac-
cess type FIFO. The FIFO length is dynamic and as it is used in a
system level design, it reports its size as it grows and shrinks. A sys-
tem designer can look at these statistics and decide the exact RTL
memory buffer size for his or her application.

302 Chapter 8

8.2.4.1 Dynamic FIFO Structure. Access type declarations for the
FIFO elements, the FIFO structure, its pointer, and head and tail
variables are shown in Figure 8.30. Variables head and tail keep
track of the two ends of the FIFO. The FIFO data is an 8-bit
std_logic_vector type array, but it can be set to any complex con-
strained type.

TYPE fifo_element;
TYPE pointer IS ACCESS fifo_element;
TYPE fifo_element IS RECORD
 data : std_logic_vector (7 DOWNTO 0);
 link : pointer;
END RECORD;
SHARED VARIABLE head, tail : pointer := NULL;

Figure 8.30 Dynamic FIFO Structure

8.2.4.2 Writing to Dynamic FIFO. Writing to the FIFO structure of
Figure 8.30 is done by the write_fifo procedure shown in Figure 8.31.
This procedure takes head and tail pointers as input. If head is null,
FIFO is empty and data_in is written to the head, and tail is set ac-
cordingly. If FIFO is not empty, a NEW link is created at the tail, and
data is written to it. Writing takes place at the tail.

PROCEDURE write_fifo(
 VARIABLE head, tail : INOUT pointer;
 data_in : IN std_logic_vector (7 DOWNTO 0)) IS
BEGIN

 IF (head=NULL) THEN
 head := NEW fifo_element;
 head.data := data_in;
 head.link := NULL;
 tail := head;
 ELSE
 tail.link := NEW fifo_element;
 tail := tail.link;
 tail.data := data_in;
 tail.link := NULL;
 END IF;

fifo_cnt := fifo_cnt+1;
REPORT "FIFO SIZE : "&INTEGER'IMAGE(fifo_cnt);

END write_fifo;

Figure 8.31 FIFO Write Procedure

Hardware Cores and Models 303

8.2.4.3 Reading from Dynamic FIFO. Reading from the dynamic
structure of Figure 8.30 is done by the read_fifo procedure of Figure
8.32. Inputs of this procedure are head and tail of the FIFO and its
output is data_out. When reading, if head and tail are the same, then
there is only one element in the FIFO that is read into data-out.
However, if there are more than one element is the FIFO, the head is
read, and head is set to head.link. In general, reading takes place at
the head.

PROCEDURE read_fifo (
 VARIABLE head, tail : INOUT pointer;
 SIGNAL data_out : OUT std_logic_vector (7 DOWNTO 0)) IS
BEGIN

 IF (head=NULL) THEN
 REPORT "FIFO IS EMPTY!";
 ELSIF (head=tail) THEN
 REPORT "HEAD=TAIL CASE";
 data_out <= head.data;
 head := NULL;
 tail := NULL;
 fifo_cnt := fifo_cnt - 1;
 ELSE
 REPORT "ELSE CASE";
 data_out <= head.data;
 head := head.link;
 fifo_cnt := fifo_cnt - 1;
 END IF;

 REPORT "FIFO SIZE : "&INTEGER'IMAGE(fifo_cnt);

END read_fifo;

Figure 8.32 FIFO Read Procedure

8.2.4.4 FIFO with RT Level Interface. Although our FIFO uses an
access type memory structure, for RT level applications where a FIFO
needs to be configured, an RT level interface is needed for the VHDL
description of this hardware. Figure 8.33 shows the general outline of
our fifo_access with RT level interface.
 The declarative part of the architecture of fifo_access contains
declarations and definitions shown in Figure 8.30, Figure 8.31, and
Figure 8.32. In addition, fifo_cnt variable is declared to keep track of
the size of FIFO. Ports and signals of this FIFO are the same as those
of the RTL synthesizable FIFO of the previous section. The fifo_access
architecture has write and read clocked processes that make writing
and reading the access type FIFO look like clocked operations.

304 Chapter 8

ENTITY fifo_access IS

 PORT (data_in : IN std_logic_vector (7 DOWNTO 0);
 clk : IN std_logic;
 rst, rd, wr : IN std_logic;
 empty, full : OUT std_logic;
 data_out : OUT std_logic_vector (7 DOWNTO 0));

END ENTITY ;
--
ARCHITECTURE procedural OF fifo_access IS

 -- FIFO structure declaration . . .
 SHARED VARIABLE fifo_cnt : INTEGER;
 SIGNAL full_temp, empty_temp : std_logic;

 -- FIFO write procedure definition . . .
 -- FIFO read procedure definition . . .

BEGIN

 write : PROCESS (clk) BEGIN
 . . .
 END PROCESS;
 --

 read : PROCESS (clk) BEGIN
 . . .
 END PROCESS;
 --

 full_temp <= '0';

 empty <= empty_temp;
 full <= full_temp;

END ARCHITECTURE;

Figure 8.33 fifo_access Interface and Outline

 Figure 8.34 shows clocked processes for writing and reading our
dynamic FIFO structure. These processes call write_fifo and read_fifo
procedures of Figure 8.31 and Figure 8.32 instead of explicitly writing
into a FIFO memory as was done in the synthesizable FIFO of the
previous section.

Hardware Cores and Models 305

write : PROCESS (clk) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF rst='1' THEN
 fifo_cnt := 0;
 ELSE
 IF (wr='1' AND full_temp='0') THEN
 write_fifo(head, tail, data_in);
 ELSIF (wr='1' AND rd='1') THEN
 write_fifo(head, tail, data_in);
 END IF;
 END IF;
 END IF;
END PROCESS;
--
read : PROCESS (clk) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF rst='1' THEN
 fifo_cnt := 0;
 ELSE
 IF (rd='1' AND empty_temp='0') THEN
 read_fifo(head, tail, data_out);
 ELSIF (rd='1' AND wr='1' AND empty_temp='1') THEN
 read_fifo(head, tail, data_out);
 END IF;
 END IF;
 IF fifo_cnt=0 THEN
 empty_temp <= '1';
 ELSE
 empty_temp <= '0';
 END IF;
 END IF;
END PROCESS;

Figure 8.34 Writing and Reading ACCESS Type FIFO Structure

8.3 Arithmetic Cores
In this section we present several combinational and sequential
arithmetic structures that can be used as embedded cores in an em-
bedded design. The cores discussed are an array multiplier, a carry-
lookahead adder, and a sequential multiplier. As the other cores in
this chapter, std_logic type will be used for description of these com-
ponents, and designs are done for configurability. Therefore uncon-
strained arrays are used where possible, otherwise generic parame-
ters are used for configurability of designs.

306 Chapter 8

8.3.1 Array Multiplier
Multiplication of binary operands in a digital system can be per-
formed in a variety of ways that are different in speed and gate count.
A sequential multiplier requires a clock and performs partial multi-
plications with each clock, while a combinational multiplier performs
its task of multiplication without requiring a clock and it has a higher
gate count. A combinational n×n multiplier requires an array on n×n
multiplier cells each of which is responsible for multiplying a bit of
multiplier with a bit of multiplicand and adding the result with the
product bit coming from a previous multiplication stage.
 Therefore, an AND gate for 1×1 multiplication and a full-adder
for the add operation constitute the required multiplier cell hard-
ware, as shown in Figure 8.35.
 The cell shown in Figure 8.35 multiplies its xi and yi inputs using
the AND gate that is marked with a dot, and adds this result with its
input partial product pi, using its carry input ci. This cell generates a
partial product po, a carry output co, and passes xi and yi inputs on to
its outputs (xo and yo).

Figure 8.35 Multiplier Cell

 Figure 8.36 shows a 4×4 array multiplier that uses 16 of the
multiplier cells of Figure 8.35. A 32-bit multiplier requires 1024 such
cells. Figure 8.37 shows the VHDL code of a multiplier cell
bit_multiplier corresponding to the diagram of Figure 8.35.

Hardware Cores and Models 307

Figure 8.36 4×4 Multiplier

The logical architecture of bit_multiplier has a full-adder, an
AND gate and pass-through wires connecting inputs xi and yi to their
corresponding outputs, xo and yo.

ENTITY bit_multiplier IS
 PORT (xi, yi, pi, ci : IN std_logic;
 xo, yo, po, co : OUT std_logic);
END bit_multiplier;

ARCHITECTURE logical OF bit_multiplier IS
 SIGNAL xy : std_logic;
BEGIN
 xy <= xi AND yi;
 co <= (pi AND xy) OR (pi AND ci) OR (xy AND ci);
 po <= pi XOR xy XOR ci;
 xo <= xi;
 yo <= yi;
END logical;

Figure 8.37 One-bit Multiplier

 Figure 8.38 shows the VHDL code of an n×n unconstrained array
multiplier. In the declarative part of this architecture xv, yv, cv, and
pv n×n arrays are declared. These signals are used for connecting
signals of the bit-multipliers of the array multiplier to their adjacent
bit-multiplier. These arrays are for connecting intermediate x inputs,

308 Chapter 8

y inputs, carry, and partial products. For example xv(i, j) connects the
xo of a bit-multiplier at location i, j to xi of the bit-multiplier to its left.

ARCHITECTURE iterative OF array_multiplier IS
 COMPONENT bit_multiplier
 PORT (xi, yi, pi, ci : IN std_logic;
 xo, yo, po, co : OUT std_logic);
 END COMPONENT;
 CONSTANT n : INTEGER := x'LENGTH - 1;
 TYPE pair IS ARRAY (n+1 DOWNTO 0, n+1 DOWNTO 0) OF
 std_logic;
 SIGNAL xv, yv, cv, pv : pair;
BEGIN
 rows: FOR i IN x'RANGE GENERATE
 cols: FOR j IN y'RANGE GENERATE
 cell: bit_multiplier PORT MAP
 (xv(i,j), yv(i,j), pv(i,j+1), cv(i,j),
 xv(i,j+1), yv(i+1,j), pv(i+1,j), cv(i,j+1));
 END GENERATE;
 END GENERATE;
 sides: FOR i IN x'RANGE GENERATE
 xv(i, 0) <= x(i);
 cv(i, 0) <= '0';
 pv(0, i+1) <= '0';
 pv(i+1, n+1) <= cv(i, n+1);
 yv(0, i) <= y(i);
 z(i) <= pv(i+1, 0);
 z(i + n+1) <= pv(n+1, i+1);
 END GENERATE;
END iterative;

Figure 8.38 Array Multiplier VHDL Description

 The body of the iterative architecture of Figure 8.38 has rows
and cols nested generate statements that wire n×n multiplier cells
(bit_multiplier entities) together. This architecture also contains the
sides generate statement that is responsible for wiring the inputs, the
outputs, and the carry outputs (cv) to partial product inputs (pv). As
shown in Figure 8.36, carry output of the left-most bit_multiplier of a
row of the array connects to the product input of the left-most
bit_multiplier of the next row.

8.3.2 Carry-Lookahead Adder
This section discusses a behavioral VHDL description of a carry-
lookahead adder. The purpose of this VHDL description is for illus-
trating how carry-lookahead adders work, and not necessarily for
synthesis. In a synthesis environment users select the add operation
for synthesizing an adder. Depending on time and space constraints,

Hardware Cores and Models 309

as well as the synthesis target library, synthesis tools decide on the
type of adders to use.
 In a ripple-carry adder, an adder cell (one-bit adder) uses the
carry output from its previous cell to generate its sum and its carry
output. This is unlike a carry-lookahead adder that generates its
carry bits based on the bits of the data inputs (add operands), instead
of relying on carry bits from the previous bits. A carry-lookahead ad-
der is faster than a ripple-carry adder because independence of a
carry bit on its previous bits eliminates the otherwise carry genera-
tion gate delays. On the other hand, a carry-lookahead adder requires
more hardware for generating carry signals of each adder cell inde-
pendent of the previous carry outputs.
 Using a 4-bit example, the following shows the hardware of a
carry-lookahead adder and illustrates how it works. In what follows,
ai and bi are data inputs of bit i of an adder cell, and ci is its carry in-
put. ci+1 is the carry output and si is the sum.
 The sum and carry outputs of a full-adder are written as shown
below:

ci+1 = ai bi + ai ci + bi ci
si = ai bi ci

The carry output can be rewritten as:

ci+1 = (ai + bi) ci + ai bi
 = pi ci + gi

Where,

pi = ai + bi

and

gi = ai bi

The pi term is called propagate since if it is ‘1’ it causes ci to propagate
to ci+1. The gi term is called generate, because it generates ci+1 if it is
‘1’. Using pi, gi, ai, bi and co, c4 of a 4-bit carry-lookahead adder is cal-
culated as shown below:

c1 = p0 c0 + g0
c2 = p1 c1 + g1
 = p1 p0 c0 + p1 g0 + g1
c3 = p2 c2 + g2
 = p2 p1 p0 c0 + p2 p1 g0 + p2 g1 + g2

310 Chapter 8

c4 = p3 c3 + g3
 = p3 p2 p1 p0 c0 + p3 p2 p1 g0 + p3 p2 g1 + p3 g2 + g2

Using the above carry outputs, the sum outputs are calculated as
shown:

s0 = a0 b0 c0
s1 = a1 b1 c1
s2 = a2 b2 c2
s3 = a3 b3 c3

Since the carry expressions use pi and gi in two-level logic expres-
sions, and pi and gi are directly calculated using adder inputs (ai and
bi), gate delays do not accumulate in carry signals of a carry-
lookahead adder. Thus such an adder is faster than a ripple-carry
adder.
 Figure 8.39 shows VHDL code of an unconstrained carry-
lookahead adder. A for-loop statement generates all the carry outputs
that are needed for the sum expressions. Carry of each adder uses
p(i), g(i) and carry bits of its previous adder. In this description, carry
expressions are not expanded when used for next upper carry calcula-
tions. Interested readers are encouraged to rewrite this code to make
all carry outputs in terms of pi, gi and adder inputs.

ENTITY c_l_adder IS
 PORT (a, b : IN std_logic_vector;
 cin : IN std_logic;
 s : OUT std_logic_vector;
 cout : OUT std_logic);
END ENTITY c_l_adder;
--
ARCHITECTURE behavioral OF c_l_adder IS
 SIGNAL p, g : std_logic_vector(a'RANGE);
 SIGNAL carry : std_logic_vector(a'LENGTH DOWNTO 0);
BEGIN
 g <= a AND b; p <= a XOR b;
 PROCESS (p, g, carry, cin) BEGIN
 carry(0) <= cin;
 FOR i IN a'REVERSE_RANGE LOOP
 carry(i+1) <= g(i) OR (p(i) AND carry(i));
 END LOOP;
 cout <= carry(a'LENGTH);
 END PROCESS;
 s <= p XOR carry(a'RANGE);
END ARCHITECTURE behavioral;

Figure 8.39 A Behavioral Unconstrained Carry-lookahead Adder

Hardware Cores and Models 311

8.3.3 Synthesizable Booth Multiplier
This section shows an unconstrained synthesizable, signed, Booth
multiplier. We first discuss how the Booth algorithm works and then
show the VHDL description of the multiplier.

8.3.3.1 Booth Algorithm. The Booth algorithm is for signed number
2’s complement multiplication. When multiplying M by Q, starting
from the right hand side of Q and assuming a ‘0’ to the right of it, a
two-bit window is formed. The algorithm considers the pair of bits in
this window as two-bit 2’s complement numbers. If this number is
negative ‘1’, i.e., “10” it subtracts M from adds –M to the accumulated
partial result, A, and then it shifts A. If this two-bit number is posi-
tive ‘1’, i.e., “01”, it adds M to A, and then it shifts A. If the two-bit
number in the window is “00” or “11”, it just shifts A without adding
or subtracting.

When the above is done for a two-bit window of Q, the window is
moved one bit position to the left, and the new two bits will be consid-
ered. For an n-bit multiplication, this process repeats n times. When
done, the bits in A and those shifted to the right of A form the 2n bits
of the result.
 The above procedure is illustrated by use of the following 4-bit
multiplication example.
We start with

M: 0110 -M: 1010
 Q: 1101
 A: 0000

Appending a ‘0’ to the right of Q, and forming a 2-bit window results
in:

M: 0110
 Q: 1101, 0
 A: 0000

Since the above window contains “10”, add –M to A, and A is shifted
to the right. We also move Q window to the left to prepare it for the
next cycle.

M: 0110
 Q: 1101, 0
 A: 1010 After add
 A: 1101, 0 After shift

312 Chapter 8

Since the Q window above contains “01”, add M to A and shift. Also
move the window:

M: 0110 -M: 1010
 Q: 1101, 0
 A: 0011, 0 After add
 A: 0001, 10 After shift

Since the Q window above contains “10”, add –M to A and shift. Also
move the window:

M: 0110 -M: 1010
 Q: 1101, 0
 A: 1011, 10 After add
 A: 1101, 110 After shift

Since the above Q window contains “11”, no adding is to be done, and
A is shifted to the right.

M: 0110 -M: 1010
 Q: 1101, 0
 A: 1110, 1110

After four shifts, the A register and its right shifted bits form the
multiplication result.

8.3.3.2 Booth Multiplier VHDL Implementation. Figure 8.40 shows
the synthesizable code of a Booth algorithm based on the above dis-
cussion. Except for a few minor differences that we discuss here, the
VHDL code of this figure implements the procedure discussed above.
 In the VHDL code of Figure 8.40, an n+1 bit register is used for
Q. The extra bit is added to the right of Q in order to form the first 2-
bit window. Upon start, mp concatenated with a ‘0’ to its left is loaded
into Q.
 In our VHDL implementation, after each add-and-shift, instead
of moving the 2-bit Q window to the left, the Q register is moved to
the right. Furthermore, as left bits of Q are emptied as the result of
this shifting, bits of A are moved into Q from the left. This way, when
the multiplication process is completed, the result in is A and in the
upper bits of Q.

Hardware Cores and Models 313

ENTITY booth_mult IS
 PORT (mc, mp : IN std_logic_vector (7 downto 0);
 clk, start : IN std_logic;
 prod : OUT std_logic_vector (15 downto 0);
 busy : OUT boolean);
END ENTITY booth_mult;
--
ARCHITECTURE behavioral OF booth_mult IS
 SIGNAL A, M : std_logic_vector (mc'RANGE);
 SIGNAL Q : std_logic_vector (mc'LENGTH DOWNTO 0);
 SIGNAL sum, dif : std_logic_vector(mc'RANGE);
 SUBTYPE cnt IS INTEGER RANGE 0 TO mc'LENGTH;
 SIGNAL count : cnt := 0;
BEGIN
 sum <= A + M;
 dif <= A - M;
 prod <= A & Q (mc'LENGTH DOWNTO 1);
 busy <= (count < mc'LENGTH);
 Counter: PROCESS (clk) BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF (start = '1') THEN count <= 0;
 ELSIF (count < mc'LENGTH) THEN count <= count + 1;
 END IF;
 END IF;
 END PROCESS;
 RegClocking: PROCESS (clk) BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF (start = '1') THEN
 A <= (OTHERS => '0');
 M <= mc;
 Q <= mp & '0';
 ELSIF (count < mc'LENGTH) THEN
 CASE Q(1 DOWNTO 0) IS
 WHEN "01" => --ADD AND SHIFT
 Q <= sum(0) & Q(Q'LEFT DOWNTO 1);
 A <= sum(sum'LEFT) &
 sum(sum'LEFT DOWNTO 1);
 WHEN "10" => --SUBTRACT AND SHIFT
 Q <= dif(0) & Q(Q'LEFT DOWNTO 1);
 A <= dif(dif'LEFT) &
 dif(dif'LEFT DOWNTO 1);
 WHEN OTHERS => --SHIFT ONLY
 Q <= A(0) & Q(Q'LEFT DOWNTO 1);
 A <= A(A'LEFT) & A(A'LEFT DOWNTO 1);
 END CASE;
 END IF;
 END IF;
 END PROCESS;
END ARCHITECTURE behavioral;

Figure 8.40 Booth Algorithm VHDL Code

314 Chapter 8

 The VHDL code of Figure 8.40 has a clocked process for imple-
menting a counter to keep track of the number of add-and-shift or
shift operations. A subtype of INTEGER, i.e., cnt, that ranges be-
tween 0 and the number of multiplier bits is used for this counter.
 The main task of multiplication is done in a clocked process that
is responsible for loading proper data into A, M and Q registers. M is
only loaded at the beginning of a multiplication session. In addition to
being initialized when star is ‘1’, A and Q registers are clocked with
data that depends on the Q(1 DOWNTO 0) window. The Q register is
shifted with each clock, and A is loaded with sum, dif or it is shifted
to the right.
 An 8-bit Booth multiplier synthesized with Altera’s Quartus II
uses 41 logic elements, 29 flip-flops, and 35 pins of a Cyclone II
FPGA.

8.4 Components with Separate Control and Data Parts
The previous sections discussed various RT level components and dis-
cussed synthesizability and styles for better synthesis. In particular,
the Booth algorithm of the previous section presented a good example
for an RT level design that is complex enough that a good knowledge
of RT level hardware is required for its proper design. In this design,
the designer has to decide what registers are, what control states are,
and how various combinational and sequential parts of a design are
to be connected. The complete design of the Booth multiplier was
done in one module without any design hierarchy.
 For more complex designs, or for beginners designing moderately
complex, RT level circuits, the method we used for the Booth multi-
plier may not result in an efficient hardware. A complex RT level de-
sign requires design partitioning, hierarchy, and top-down design
methodology. In this section we elaborate on these topics. We use two
designs to illustrate a systematic method for core design at the RT
level. The First example is a shift-and-add multiplier, and the second
is a small processor model. Both designs are synthesizable.
 In these designs we will perform control-data partitioning, decide
on data components and their control signals, specify interconnec-
tions of data components and their corresponding control signals, and
finally design our controller.

8.4.1 Sequential Multiplier
Our first example of RT level system design is a shift-and-add se-
quential multiplier, with an 8-bit A and B inputs and a 16-bit result.

Hardware Cores and Models 315

The block diagram of this circuit is shown in Figure 8.41. This multi-
plier has an 8-bit bi-directional I/O for inputting its A and B oper-
ands, and outputting its 16-bit output one byte at a time.
 Multiplication begins with the start pulse. On the clock edge that
start is ‘1’, operand A is on the databus and in the next clock, this bus
will contain operand B. The two operands appear on the bus in two
consecutive clock pulses. After accepting these data inputs, the mul-
tiplier begins its multiplication process and when it is completed, it
starts sending the result out on the databus. When the least-
significant byte is placed on databus, the lsb_out output is issued, and
for the most-significant byte, msb_out is issued. When both bytes are
outputted, done becomes ‘1’, and the multiplier is ready for another
set of data. The multiplexed bi-directional databus is used to reduce
the total number of pins of the multiplier.

Figure 8.41 Multiplier Block Diagram

 Shift-and-add is a simple multiplication method that is slow, but
efficient in use of hardware. In this method, depending on bit i of op-
erand A, either operand B is added to the collected partial result and
then shifted to the right (when bit i is 1), or (when bit i is 0) the col-
lected partial result is shifted one place to the right without being
added to B.
 As in the Booth multiplier of the previous section, we use a 4-bit
example to clarify the above procedure. As shown in Figure 8.42,
A=1001 and B=1101 are to be multiplied. Initially at time 0, A is in a
shift-register with a register for partial results (P) on its left.
 At the time 0, because A[0] is 1, the partial sum of B+P is calcu-
lated. This value is 01101 (shown in the upper part of time 1) and has
5 bits to consider carry. The right most bit of this partial sum is
shifted into the A register, and the other bits replace the old value of
P. When A is shifted, 0 moves into the A[0] position. This value is ob-
served at time 1. At this time, because A[0] is 0, 0000 + P is calcu-
lated (instead of B+P). This value is 00110, the right most bit of
which is shifted into A, and the rest replace P. This process repeats 4
times. At the end of the 4th cycle, the least significant 4 bits of the

316 Chapter 8

multiplication result become available in A and the most significant
bits in P. The example used here performed 9 13 and 117 is ob-
tained as the result of this operation.

Figure 8.42 Hardware Oriented Multiplication Process

8.4.1.1 Sequential Multiplier Design. The multiplication process
discussed above justifies the hardware implementation that will be
discussed here.
 The multiplier has a datapath and a controller. The datapath
consists of registers, logic units and their interconnecting busses. The
controller is a state machine that issues specific signals for control-
ling data that gets clocked into data registers.

Figure 8.43 Datapath and Controller

 As shown in Figure 8.43, the datapath register and the controller
are triggered with the same clock signal. On the rising edge of a clock,
the controller goes into a new state. In this state, several control sig-

Hardware Cores and Models 317

nals are issued, and as a result, the components of the datapath start
reacting to these signals. The time given for all activities of the data
to stabilize is from one edge of the clock to another. Values that are
propagated to the inputs of the datapath registers are clocked into
these registers with every positive edge of the clock.
 Figure 8.44 shows the datapath of the sequential multiplier. As
shown, P and B are outputs of 8-bit registers and A is the output of
an 8-bit shift-register. These components are implemented with proc-
ess statements in the VHDL code of the multiplier. An adder, a mul-
tiplexer and two tri-state buffers constitute the other components of
this datapath. These components are implemented with concurrent
signal assignment statements.

Figure 8.44 Multiplier Block Diagram

 Control signals that are outputs of the controller and inputs of
the datapath (Figure 8.43), are named according to their functional-
ities like loading registers, shifting, etc. These signals are shown in
the corresponding blocks of Figure 8.44 next to the data component
that they control.

318 Chapter 8

 The input databus connects to the inputs of A and B to load mul-
tiplier and multiplicand into these registers. This bi-directional bus is
driven by the outputs of P and A through tri-state buffers. These tri-
states become active when multiplication result is ready.
 The output from B and P are added to form co and sum to be put
in P if adding is to take place. Otherwise, P is put on ShiftAdd to be
shifted, while being put back into P. ShiftAdd is the multiplexer out-
put that selects sum or P. The sel_sum control input determines if
sum or P is to go on the multiplexer output.
 The AND function shown in Figure 8.44 selects carry-out from
the adder or 0 depending on the value of sel_sum control input. This
value is concatenated to the left of the multiplexer output to form a 9-
bit vector. This vector has P+B or P with a carry to its left. The right-
most bit of this 9-bit vector is split and goes into the serial input of
the shift-register that contains A, and the other eight bits go into reg-
ister P. Note that concatenation of the AND outut to the left of the
multiplexer output and splitting the right bit from this 9-bit vector,
effectively produces a shifted result that is clocked into P.

8.4.1.2 Sequential Multiplier Datapath. The complete datapath
VHDL description of the multiplier is shown in Figure 8.45. VHDL
concurrent signal assignments and process statements are used to
describe components of the datapath. As shown here, the first two
process statements represent registers B and P, for operand B and
the partial result, P. The process statement that comes next in this
figure represents an 8-bit shift register.

This shift register is used for operand A of the multiplier, and it
either loads A with data (controlled by load_A) or shifts its contents
(controlled by shift_A). The op 2-bit vector concatenates these control
signals.
 Signal assignments and conditional signal assignments in the
datapath of Figure 8.45 are used for describing combinational parts of
this part. The adder for adding P and B uses the add operator and
puts the result on result, the eight right-most bits of which form the
sum vector and its left-most bit is the carry output, co.
 The conditional signal assignment in Figure 8.45 implements a
multiplexer that when enabled (clr_P is ‘0’), selects P or sum to be
clocked into P. Other conditional signal assignments in Figure 8.45
are for tri-state buffers at the outputs of P and A registers (see Figure
8.44).

Hardware Cores and Models 319

ENTITY datapath IS
 PORT (clk, clr_P, load_P, load_B : IN std_logic;
 msb_out, lsb_out, sel_sum : IN std_logic;
 load_A, shift_A : IN std_logic;
 data : INOUT std_logic_vector (7 DOWNTO 0);
 A0 : OUT std_logic);
END ENTITY;
--
ARCHITECTURE procedural OF datapath IS
 SIGNAL sum, ShiftAdd : std_logic_vector (7 DOWNTO 0);
 SIGNAL A, B, P : std_logic_vector (7 DOWNTO 0);
 SIGNAL co : std_logic;
 SIGNAL op : std_logic_vector (1 DOWNTO 0);
 SIGNAL result : std_logic_vector (8 DOWNTO 0);
BEGIN
 PROCESS (clk) BEGIN
 IF(clk = '0' AND clk'EVENT) THEN
 IF (load_B = '1') THEN B <= data;
 END IF;
 END IF;
 END PROCESS;
 --
 PROCESS (clk) BEGIN
 IF(clk = '0' AND clk'EVENT) THEN
 IF (load_P = '1') THEN
 P <= (co AND sel_sum) & ShiftAdd (7 DOWNTO 1);
 END IF;
 END IF;
 END PROCESS;
 --
 PROCESS (clk) BEGIN
 IF(clk = '0' AND clk'EVENT) THEN
 CASE op IS
 WHEN "01" => A <= ShiftAdd(0) & A(7 DOWNTO 1);
 WHEN "10" => A <= data;
 WHEN OTHERS => A <= A;
 END CASE;
 END IF;
 END PROCESS;

 result <= ('0'&P) + ('0'&B);
 co <= result(8);
 sum <= result(7 DOWNTO 0);

 A0 <= A(0);
 ShiftAdd <= (OTHERS => '0') WHEN clr_P = '1' ELSE
 P WHEN sel_sum = '0' ELSE sum;
 data <= A WHEN lsb_out = '1' ELSE (OTHERS => 'Z');
 data <= P WHEN msb_out = '1' ELSE (OTHERS => 'Z');
 op <= load_A & shift_A;
END ARCHITECTURE procedural;

Figure 8.45 Shift-and-add Multiplier Datapath

320 Chapter 8

8.4.1.3 Multiplier Controller. The multiplier controller is a finite
state machine that has two starting states, eight multiplication
states, and two ending states. Figure 8.46 shows the VHDL code of
this circuit in which state is declared as an enumeration type of the
states of the multiplier controller. The controller uses a combinational
process for issuing control signals and a sequential process for clock-
ing the control registers. The current state of the controller is saved
in the current signal of type state.
 The VHDL code of the controller consists of a sequential process
for register clocking and a combinational process for activating the
control signals.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY controller IS
 PORT (clk, start, A0 : IN std_logic;
 clr_P, load_P, load_B : OUT std_logic;
 msb_out, lsb_out, sel_sum : OUT std_logic;
 load_A, Shift_A, done : OUT std_logic);
END ENTITY;
--
ARCHITECTURE procedural OF controller IS
 TYPE state IS (idle, init,
 m1, m2, m3, m4, m5, m6, m7, m8,
 rslt1, rslt2);
 SIGNAL current : state;
BEGIN
 sequential: PROCESS (clk) BEGIN
 IF (clk = '0' AND clk'EVENT) THEN
 CASE current IS
 WHEN idle =>
 IF start = '0' THEN
 current <= idle;
 ELSE
 current <= init;
 END IF;
 WHEN init =>
 current <= m1;
 WHEN m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 =>
 current <= state'SUCC(current);
 WHEN rslt1 =>
 current <= rslt2;
 WHEN rslt2 =>
 current <= idle;
 WHEN OTHERS =>
 current <= idle;
 END CASE;
 END IF;
 END PROCESS; -- Continued

Hardware Cores and Models 321

 combinational: PROCESS (current, start, A0) BEGIN
 clr_P <= '0'; load_P <= '0';
 load_B <= '0';
 msb_out <= '0'; lsb_out <= '0';
 sel_sum <= '0'; load_A <= '0';
 Shift_A <= '0'; done <= '0';
 CASE current IS
 WHEN idle =>
 IF start = '0' THEN
 done <= '1';
 ELSE
 load_A <= '1';
 clr_P<= '1';
 load_P <= '1';
 END IF;
 WHEN init =>
 load_B <= '1';
 WHEN m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 =>
 Shift_A <= '1';
 load_P <= '1';
 IF (A0 = '1') THEN
 sel_sum <= '1';
 END IF;
 WHEN rslt1 =>
 lsb_out <= '1';
 WHEN rslt2 =>
 msb_out <= '1';
 WHEN OTHERS =>
 clr_P <= '0'; load_P <= '0';
 load_B <= '0'; msb_out <= '0';
 lsb_out <= '0'; sel_sum <= '0';
 load_A <= '0'; Shift_A <= '0';
 done <= '0';
 END CASE;
 END PROCESS;
END ARCHITECTURE procedural;

Figure 8.46 Multiplier Controller

 The sequential process of Figure 8.46 is sensitive to the positive
edge of the clock and is responsible for state transitions. This process
has a case-statement that is parallel with that of the combinational
process.
 The controller declares datapath control signals as outputs and
issues them in its combinational process. Decisions made in this proc-
ess statement are based on current. When current is idle and start is
‘0’, the done output remains high. In this state if start becomes ‘1’,
control signals load_A, clr_P and load_P become active to load A with
databus and clear the P register. Clearing P requires clr_P to put 0’s
on the ShiftAdd of the datapath and load the ‘0’s into P by asserting

322 Chapter 8

load_P. In m1 to m8 states, A is shifted, P is loaded, and if A0 is ‘1’,
sel_sum is asserted. As discussed in relation to datapath, sel_sum
controls shifted P+B (or shifted P) to go into P. In the result states,
lsb_out and msb_out are asserted in two consecutive clocks in order to
put A and P on the data bus respectively.

8.4.1.4 Top-level Multiplier. The VHDL code of the multiplier con-
sisting of instantiation of datapath and controller of Figures 8.43 and
8.44 is shown in Figure 8.47. This description is synthesizable.

ENTITY Multiplier IS
 PORT (clk, start : IN std_logic;
 databus : INOUT std_logic_vector (7 DOWNTO 0);
 lsb_out, msb_out, done : OUT std_logic);
END ENTITY;
--
ARCHITECTURE structural OF Multiplier IS
 SIGNAL clr_P, load_P, load_B, msb_out_t, A0 : std_logic;
 SIGNAL lsb_out_t, sel_sum, load_A, Shift_A : std_logic;
BEGIN
 dpu : ENTITY WORK.datapath(procedural)
 PORT MAP (clk, clr_P, load_P, load_B,
 msb_out_t, lsb_out_t, sel_sum,
 load_A, Shift_A, databus, A0);
 cu : ENTITY WORK.controller(procedural)
 PORT MAP (clk, start, A0, clr_P, load_P, load_B,
 msb_out_t, lsb_out_t, sel_sum,
 load_A, Shift_A, done);
 msb_out <= msb_out_t;
 lsb_out <= lsb_out_t;
END ARCHITECTURE structural;

Figure 8.47 Top-level Multiplier Module

8.4.2 von Neumann Computer Model
The previous section was our first step in showing how a complete
top-down design could be put together in VHDL. In this section we
take our presentation of complete system design one step further, and
present design, and implementation for a hardware based on von
Neumann computer model.

8.4.2.1 Processor and Memory Model. The von Neumann computer
model is based on a processor using instructions and data from a sin-
gle memory. Using a sequencer (see Figure 8.48), the processor
fetches instructions from its memory. An instruction has an opcode
indicating the function it is supposed to perform. Using this opcode,

Hardware Cores and Models 323

the processor performs its proper operation. Such an operation may
involve reading or writing data from or to the memory, for which the
same memory as that of the instructions will be used.

Figure 8.48 von Neumann Process Model

 Our design example in this section is a simple von Neumann
model with memory accessing mechanism for instructions and data.
This design is at the RT Level and has a separate datapath and con-
trol unit. In designing the datapath, we partition it into its subcom-
ponents and describe each subcomponent separately. This includes
the instruction sequencer part of the datapath that is the program
counter component.

8.4.2.2 Processor Model Specification. The example that we use is
a simple adding machine, which we refer to as AddingCPU. It must
be mentioned, that we are using this example to demonstrate our de-
sign methodology. This specific example has very little practical
value, if it were to be designed for a real application, much simpler
coding than what we are presenting here could be used. The tech-
niques presented here will be used for the design and test of the proc-
essor of the next section.
 Our Adding CPU reads Load, Add, Store, and Jump instruc-
tions from its memory, and depending on the instruction it reads,
loads data, performs addition, stores data into memory, or jumps to
another memory location. Figure 8.49 shows the overall structure of
this adding machine.
 The circuit shown has a 6-bit address bus to address the memory
for read and write operations. The 8-bit data bus of this machine is
used for data in and out of the machine. Control signals, reset,
rd_mem and wr_mem are used for reseting, memory read, and mem-
ory write operations.

324 Chapter 8

Figure 8.49 Interface of the Adding CPU Example

 The machine starts reading its memory from location 0. An 8-bit
word fetched from the memory consists of a 2-bit opcode and a 6-bit
data or address. This field is either an immediate data or a memory
address where the operand of the fetched instruction is. Figure 8.50
shows our machine’s opcodes and instruction format.

Figure 8.50 Instruction Format

 The Adding CPU has a main register called AC (accumulator).
The Load instruction directs the machine to load the addressed data
from the memory into AC. The Store instruction causes contents of
AC to be written into the addressed location in the memory. The op-
erand of the Add instruction is immd (immediate). This instruction
adds immd to the present contents of AC and puts the result back
into AC. The Jump instruction loads the 6-bit address into the pro-
gram counter of our machine, causing the next instruction to be
fetched from this address.

8.4.2.3 Designing the Adding CPU. The first step in the design of
our adding machine is to decide on its data and control partitioning
and decide what goes into its data part and what behavior is expected
from its controller.
 The datapath of the design has the AC register for keeping data
to operate on, the PC register to keep track of the address being
fetched, and an adder unit to perform the addition. In addition, the
datapath has an instruction register (IR) for storing the most recently

Hardware Cores and Models 325

fetched instruction. Data registers are clocked with the same clock as
the controller.
 The controller part is a state machine that looks at the opcode of
the instruction in IR and decides on how data is to be routed.

8.4.2.4 Design of Datapath. An indicated above, the main compo-
nents of the datapath of our design are AC, PC (program counter), IR,
and an ALU. Detailed operation of these components will be decided
once we decide on the architecture that incorporates them.
 Given the Adding CPU description of Section 8.4.2.4, the bussing
shown in Figure 8.51 is appropriate for handling the necessary opera-
tions mentioned in this section. As shown here, the datapath has an
internal dbus bus. The external bidirectional data_bus drives and is
driven by dbus. This bus connects to the input of IR in order to bring
instruction read from the memory into this register.

Figure 8.51 Architectural Design of our Adding Machine

IR has a load input (ld_ir) that is activated to cause it load from
data_bus. Similarly, this bus connects to AC to bring data read from
the memory into this register. The control signal for loading AC is
ld_ac. This control signal is issued when the Load instruction is be-
ing expected. PC has three control signals ld_pc, inc_pc and ctr_pc to
load, clear and increment it, respectively. The right most 6-bits of IR
connect to the input of PC for execution of the Jump instruction.
 For executing the Store instruction, AC is placed on the left in-
put of ALU and from there to dbus, which eventually goes on
data_bus. At the same time, IR is placed on addr_bus to specify the
address in which AC data is to be stored. For this purpose, the adder

326 Chapter 8

unit (ALU) has a pass control input to make it pass its left input data
to its output.
 Execution of the Add instruction is done by taking one of the add
operands from AC and the other from IR. For this instruction, acti-
vating the add control input of ALU causes the ALU to perform addi-
tion.
 The simple bussing structure described above facilitates execu-
tion of all four instructions of our simple Adding CPU. When a bus
has more than one source driving it, e.g., IR and PC driving
addr_bus, control signals from the controller select the source.

8.4.2.5 Control Part Design. After the design of the datapath and
figuring control signals and their role in activities in the datapath,
the design of the controller becomes a simple matter. The block dia-
gram of this part is shown in Figure 8.52.

Figure 8.52 Controller of Adding CPU

 The controller of our simple von Neumann machine has four
states, Reset, Fetch, Decode and Execute. As the machine cycles
through these states, various control signals are issued. In state Re-
set, for example, the clr_pc control signal is issued. State Fetch issues
pc_on_adr, rd_mem, data_on_dbus, ld_ir, and inc_pc, to read memory
from the present PC location, route it to IR, load it into IR, and in-
crement PC for the next memory fetch. Depending on opcode bits,
that are the controller inputs, the Execute state of the controller is-

Hardware Cores and Models 327

sues control signals for execution of Load, Store, Add and Jump
instructions. The next section discusses details of the controller sig-
nals and their role in execution of these instructions.

8.4.2.6 AddingCPU VHDL Description. We develop the complete
VHDL code of our simple adding machine by developing code for the
blocks of Figure 8.51. We first describe components of the datapath,
and then will form the VHDL code of the datapath by instantiating
and wiring these components. The controller will be described next,
using a state machine coding style. At the end, the description of our
small von Neumann example will be completed by wiring datapath
and controller in a top-level VHDL module.

8.4.2.7 Data Components. Datapath components of Adding CPU
could be described by process and assignment statements directly in
the datapath description of the machine. Recall that this coding tech-
nique was used for the multiplier example of the previous section.
However, in this example we are taking a more general and extend-
able approach. We describe our components so that they can be inde-
pendently simulated and tested. This is necessary for large designs
with more complex components. The approach presented here will be
used in describing our larger machine in Chapter 10. VHDL code for
PC, AC, IR, and ALU modules are shown in Figure 8.53.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY AC IS
 PORT (data_in : IN std_logic_vector(7 DOWNTO 0);
 load, clk : IN std_logic;
 data_out : OUT std_logic_vector(7 DOWNTO 0));
END ENTITY ;
--
ARCHITECTURE procedural OF AC IS BEGIN
 PROCESS (clk) BEGIN
 IF clk = '1' AND clk'EVENT THEN
 IF load = '1' THEN
 data_out <= data_in;
 END IF;
 END IF;
 END PROCESS;
END ARCHITECTURE;

ENTITY IR IS
 PORT (data_in : IN std_logic_vector(7 DOWNTO 0);
 load, clk : IN std_logic;
 data_out : OUT std_logic_vector(7 DOWNTO 0));
END ENTITY ; -- Continued

328 Chapter 8

ARCHITECTURE procedural OF IR IS BEGIN
 PROCESS (clk) BEGIN
 IF clk = '1' AND clk'EVENT THEN
 IF load = '1' THEN data_out <= data_in; END IF;
 END IF;
 END PROCESS;
END ARCHITECTURE;

ENTITY PC IS
 PORT (data_in : IN std_logic_vector(5 DOWNTO 0);
 load, inc, clr, clk : IN std_logic;
 data_out : OUT std_logic_vector(5 DOWNTO 0));
END ENTITY ;
--
ARCHITECTURE procedural OF PC IS
 SIGNAL pc : std_logic_vector(5 DOWNTO 0);
BEGIN
 PROCESS (clk) BEGIN
 IF clk = '1' AND clk'EVENT THEN
 IF clr = '1' THEN
 pc <= (OTHERS => '0');
 ELSIF load = '1' THEN
 pc <= data_in;
 ELSIF inc = '1' THEN
 pc <= pc + 1;
 END IF;
 END IF;
 END PROCESS;
 data_out <= pc;
END ARCHITECTURE;

ENTITY ALU IS
 PORT (a, b : IN std_logic_vector(7 DOWNTO 0);
 pass, add : IN std_logic;
 alu_out : OUT std_logic_vector(7 DOWNTO 0));
END ENTITY ;
--
ARCHITECTURE functional OF ALU IS
 SIGNAL alu_res : std_logic_vector(7 DOWNTO 0);
BEGIN
 PROCESS (a, b, pass, add) BEGIN
 IF pass = '1' THEN
 alu_res <= a;
 ELSIF add = '1' THEN
 alu_res <= a + b;
 ELSE
 alu_res <= (OTHERS => '0');
 END IF;
 END PROCESS;
 alu_out <= alu_res;
END ARCHITECTURE;

Figure 8.53 Datapath Components of the Adding Machine

Hardware Cores and Models 329

 Accumulator (AC) and instruction register (IR) are simple regis-
ters with load enable control inputs. These inputs are driven by con-
trol signals coming from the controller through datapath ports. The
program counter (PC) is a counter with parallel load, increment and
clear capabilities. As shown, this component has three control signals
to control its functionality. The ALU (the last module in Figure 8.53)
is a combinational logic with pass and add control inputs. If pass is 1,
the a input goes on the output, and if add is 1, the ALU output be-
comes the sum of a and b. Codes presented above are synthesizable
and individually testable. These parts are istantiated in the datapath
of our machine.

8.4.2.8 DataPath Description. Figure 8.54 shows the datapath de-
scription of Adding CPU. The module name for this description is
DataPath and it corresponds to the left-hand side of Figure 8.51.
When studying the discussion below and the VHDL code of the
datapath, the reader is encouraged to consider Figure 8.51, and make
correspondence between VHDL signals and constructs with graphical
notations of this figure.
 The inputs of the VHDL code of Figure 8.54 are control signals
coming from the controller, and the bidirectional data_bus. The out-
puts of this module are the opcode and the address bus. The opcode
goes out to the controller and the address bus goes to the memory for
operand and instruction fetch.
 Following the input and output declarations, in the DataPath
entity, the structural architecture of this entity declares internal
datapath busses and signals. As shown, these declarations are fol-
lowed by instantiation of data components, IR, PC, AC and ALU. In-
terconnection of these components are done through wires and busses
declared by signal declarations of std_logic_vector type.
 Control signals responsible for loading and incrementing regis-
ters and controlling ALU function connect to the control inputs of IR,
PC, AC, and ALU.
 In the last part of datapath, bus assignments take place. We use
bus control signals coming from the controller to drive a left-hand-
side bus either with one of its sources or high impedance. For exam-
ple, pc_on_adr control signal either puts PC output (pc_out) or all Z’s
on adr_bus. The dbus bus is declared to connect to the external bidi-
rectional data_bus. Two assignments are made to dbus using
alu_on_dbus and data_on_dbus control signals. Placement of this in-
termediate bus on the external data bus of the datapath (data_bus) is
controlled by dbus_on_data control signal. The last statement shown
in Figure 8.54 places most significant IR bits on the op_code output of
DataPath that goes out to the controller.

330 Chapter 8

 Although we have used tri-state busses, when synthesizing this
circuit, we can direct our synthesis tool to use AND-OR or multiplex-
ers to implement these busses.

ENTITY datapath IS
 PORT (ir_on_adr, pc_on_adr, dbus_on_data : IN std_logic;
 data_on_dbus, ld_ir, ld_ac, ld_pc : IN std_logic;
 inc_pc, clr_pc,
 pass, add, alu_on_dbus, clk : IN std_logic;
 adr_bus : OUT std_logic_vector(5 DOWNTO 0);
 op_code : OUT std_logic_vector(1 DOWNTO 0);
 data_bus : INOUT std_logic_vector(7 DOWNTO 0));
END ENTITY ;
--
ARCHITECTURE structural OF datapath IS
 SIGNAL dbus, ir_out, a_side :
 std_logic_vector(7 DOWNTO 0);
 SIGNAL alu_out, b_side : std_logic_vector(7 DOWNTO 0);
 SIGNAL pc_out : std_logic_vector(5 DOWNTO 0);
BEGIN
 IR : ENTITY WORK.IR(procedural)
 PORT MAP (dbus, ld_ir, clk, ir_out);
 PC : ENTITY WORK.PC(procedural)
 PORT MAP (ir_out(5 DOWNTO 0), ld_pc, inc_pc,
 clr_pc, clk, pc_out);
 AC : ENTITY WORK.AC(procedural)
 PORT MAP (dbus, ld_ac, clk, a_side);
 ALU : ENTITY WORK.ALU(functional)
 PORT MAP (a_side, b_side, pass, add, alu_out);

 b_side <= '0'&'0'&ir_out(5 DOWNTO 0);

 adr_bus <= ir_out(5 DOWNTO 0) WHEN ir_on_adr = '1' ELSE
 (OTHERS => 'Z');
 adr_bus <= pc_out WHEN pc_on_adr = '1' ELSE
 (OTHERS => 'Z');
 dbus <= alu_out WHEN alu_on_dbus = '1' ELSE
 (OTHERS => 'Z');
 data_bus <= dbus WHEN dbus_on_data = '1' ELSE
 (OTHERS => 'Z');
 dbus <= data_bus WHEN data_on_dbus = '1' ELSE
 (OTHERS => 'Z');
 op_code <= ir_out(7 DOWNTO 6);

END ARCHITECTURE;

Figure 8.54 Adding CPU Datapath Description

Hardware Cores and Models 331

ENTITY controller IS
 PORT (rst, clk : IN std_logic;
 op_code : IN std_logic_vector(1 DOWNTO 0);
 rd_mem, wr_mem : OUT std_logic;
 ir_on_adr, pc_on_adr : OUT std_logic;
 dbus_on_data, data_on_dbus, ld_ir : OUT std_logic;
 ld_ac, ld_pc, inc_pc, clr_pc,pass : OUT std_logic;
 add, alu_on_dbus : OUT std_logic);
END ENTITY ;
--
ARCHITECTURE procedural OF controller IS
 TYPE state IS (Reset, Fetch, Decode, Execute);
 SIGNAL present_state, next_state : state;
BEGIN
 PROCESS (clk)--Sequential
 BEGIN
 IF clk = '1' AND clk'EVENT THEN
 IF rst = '1' THEN
 present_state <= Reset;
 ELSE
 present_state <= next_state;
 END IF;
 END IF;
 END PROCESS;
 --
 PROCESS (present_state, rst)--Combinational
 BEGIN
 rd_mem <= '0'; wr_mem <= '0'; ir_on_adr <= '0';
 pc_on_adr <= '0'; dbus_on_data <= '0';
 data_on_dbus <= '0'; ld_ir <= '0'; pass <= '0';
 ld_ac <= '0'; ld_pc <= '0'; inc_pc <= '0';
 clr_pc <= '0'; add <= '0'; alu_on_dbus <= '0';
 CASE present_state IS
 WHEN Reset =>
 IF rst = '1' THEN
 next_state <= Reset;
 ELSE
 next_state <= Fetch;
 END IF;
 clr_pc <= '1';
 WHEN Fetch =>
 next_state <= Decode;
 pc_on_adr <= '1';
 rd_mem <= '1';
 data_on_dbus <= '1';
 ld_ir <= '1';
 inc_pc <= '1';
 WHEN Decode =>
 next_state <= Execute;

 -- Continued

332 Chapter 8

 WHEN Execute =>
 next_state <= Fetch;
 CASE op_code IS
 WHEN "00" =>
 ir_on_adr <= '1'; rd_mem <= '1';
 data_on_dbus <= '1'; ld_ac <= '1';
 WHEN "01" =>
 dbus_on_data <= '1'; alu_on_dbus <= '1';
 pass <= '1'; wr_mem <= '1';
 ir_on_adr <= '1';

 WHEN "10" =>
 ld_pc <= '1';
 WHEN "11" =>
 add <= '1'; alu_on_dbus <= '1';
 ld_ac <= '1';
 WHEN OTHERS =>
 rd_mem <= '0'; pc_on_adr <= '0';
 pass <= '0';
 ir_on_adr <= '0'; wr_mem <= '0';
 ld_ac <= '0';
 dbus_on_data <= '0'; data_on_dbus <= '0';
 ld_ir <= '0'; alu_on_dbus <= '0';
 add <= '0';
 inc_pc <= '0'; clr_pc <= '0';
 ld_pc <= '0';
 END CASE;
 WHEN OTHERS => next_state <= Reset;
 END CASE;
 END PROCESS;
END ARCHITECTURE;

Figure 8.55 Controller VHDL Code

8.4.2.9 Controller Description. The controller code for our adding
machine example is shown in Figure 8.55. This code corresponds to
the right hand side of Figure 8.51 which is shown in more details in
Figure 8.52. In addition to clk and reset, the controller has the
op_code input that is driven by IR and comes to the controller from
the datapath entity (see Figure 8.51).

The sequencing of control states is implemented by a Huffman
style VHDL code. In this style, a process statement handles assign-
ment of values to present_state, and another process statement uses
this register output as the input of a combinational logic determining
next_state. This combinational block also sets values to control signals
that are outputs of the controller.
 The former process statement synthesizes as a register with ac-
tive high reset, and the latter, (i.e., combinational) synthesizes to a
combinational block. This statement uses present_state and reset on
its sensitivity list. For synthesis purposes and to avoid output latches,

Hardware Cores and Models 333

all outputs of this block, that are the control signals, are set to their
inactive, ‘0’, values. In the body of the combinational process a case
statement checks present_state against the states of the machine (Re-
set, Fetch, Decode, and Execute), and activates the proper control sig-
nals.
 The Reset state activates clr_pc to clear PC and sets Fetch as the
next state of the machine. In the Fetch state, pc_on_adr, rd_mem,
data_on_dbus, ld_ir, and inc_pc become active, and Decode is set to
become the next state of the machine. By activating pc_on_adr and
rd_mem, the PC output goes on the memory address and a read op-
eration is issued. Assuming the memory responds in the same clock,
contents of memory at the PC address will be put on data_bus. Issu-
ance of data_on_dbus puts the contents of this bus on the internal
dbus of datapath. This bus is connected to the input of IR and issu-
ance of ld_ir loads its contents into this register. The next state of the
controller is Decode, that makes the new contents of IR available for
the controller. In the Execute state, a newly fetched instruction in IR
decides on control signals to issue to execute the instruction.
 In the Execute state, op_code is used in a case expression to de-
cide on control signals to issue depending on the opcode of the fetched
instruction. The case choices in this statement are four opcode values
of 00, 01, 10 and 11 that correspond to Load, Store, Jump and Add
instruction.
 For Load, ir_on_adr, rd_mem, data_on_dbus and ld_ac are is-
sued. These control signals cause the address from IR to be placed on
the adr_bus address bus, memory read to take place, and data from
memory to be loaded into AC. Data from the memory come through
data_bus onto dbus of DataPath by the control signal data_on_dbus.
 Controller executes the Store instruction by issuing pass,
ir_on_adr, alu_on_dbus, dbus_on_data and wr_mem. As shown in
Figure 8.51, these signals take contents of AC to the input bus of the
memory (i.e., data_bus), and wr_mem causes the writing into the
memory to take place. Note that pass causes AC to pass through ALU
unchanged.
 The Jump instruction is executed by enabling PC load input,
which takes the jump address from IR (see Figure 8.51).
 The last instruction of this machine is Add, for execution of
which, add, alu_on_dbus, and ld_ac are issued. This instruction adds
data in the upper six bits of IR with AC and loads the result into AC.
The add control signal instructs ALU to add its two inputs; the
alu_on_dbus puts this output on the internal datapath dbus; and the
ld_ac causes AC to be loaded with the result of addition.

8.4.2.10 The Complete Machine. The top-level architecture for our
adding machine example is shown in Figure 8.56. In the structural

334 Chapter 8

architecture of the AddingCPU, DataPath and Controller modules are
instantiated. Port connections of the Controller include its output
control signals, the opcode input from DataPath and the reset exter-
nal input. Port connections of DataPath consist of adr_bus and
data_bus external busses, opcode output, and control signal inputs.

ENTITY addingCPU IS
 PORT (reset, clk : IN std_logic;
 adr_bus : OUT std_logic_vector(5 DOWNTO 0);
 rd_mem, wr_mem : OUT std_logic;
 data_bus : INOUT std_logic_vector(7 DOWNTO 0));
END ENTITY ;
--
ARCHITECTURE structural OF addingCPU IS
 SIGNAL ir_on_adr, pc_on_adr, dbus_on_data : std_logic;
 SIGNAL data_on_dbus, ld_ir, ld_ac, ld_pc : std_logic;
 SIGNAL inc_pc, clr_pc : std_logic;
 SIGNAL pass, add, alu_on_dbus : std_logic;
 SIGNAL op_code : std_logic_vector(1 DOWNTO 0);
BEGIN
 CU: ENTITY WORK.Controller
 PORT MAP (reset, clk, op_code, rd_mem,
 wr_mem, ir_on_adr, pc_on_adr,
 dbus_on_data, data_on_dbus,
 ld_ir, ld_ac, ld_pc, inc_pc,
 clr_pc, pass, add, alu_on_dbus);
 DP: ENTITY WORK.DataPath
 PORT MAP (ir_on_adr, pc_on_adr, dbus_on_data,
 data_on_dbus,ld_ir, ld_ac, ld_pc,
 inc_pc, clr_pc, pass, add,
 alu_on_dbus, clk, adr_bus, op_code,
 data_bus);
END ARCHITECTURE;

Figure 8.56 AddingCPU Top-level Description

8.5 Summary
This chapter presented VHDL code and descriptions for several
hardware components. We emphasized on synthesizable cores, but
also considered situations that a core model was to be for evaluation
purposes only. In the first sections of this chapter individual stand-
alone component descriptions were discussed. In the RT Level section
we showed design partitioning and putting sub-components of a sys-
tem together for formation of complete systems. In the next chapter
test techniques will be discussed.

Hardware Cores and Models 335

Problems
8.1 Write a generic unconstrained n to 2n decoder; use std_logic.
The decoder has an active low enable input an n bit input and a 2n

output. The data inputs and the outputs are active high. When in-
stantiated, this decoder expands to its required size. Show an exam-
ple of the usage of this decoder.

8.2 Write a push-pop stack model using the VHDL access type.
Push is done after a clock pulse, and pop is done first and then
clocked. Use the access type so that the stack can be made with no
limit. Data on the stack is a record of an 8-bit BIT_VECTOR and a
TIME field. The stack has a clock input, but you will only be mimick-
ing the clocking since the access type does not require a clock.

8.3 Write complete VHDL code of a stack that operates on a mem-
ory block with 512 word address space and 16-bit word length. The
memory has a bidirectional input-output bus, an address bus and ap-
propriate control inputs as described next. The memory is clocked
with a Clk input and has Read and Write inputs. When Read is 1, the
addressed data will be read and when Write is 1, data on its data bus
will be written to the addressed location. The stack using this mem-
ory has Push, Pop, Tos inputs and Full and Empty outputs, as well as
a 16-bit Datain input and a 16-bit Dataout output. Push pushes
Datain to the top location of the stack; Pop removes the top location of
the stack and makes it available on Dataout, and Tos reads the top-
of-stack without altering the contents of the stack. Empty is asserted
when the stack is empty and Full is asserted when the stack is full.
Show the complete VHDL code including the memory and the stack
controller.

8.4 A VHDL structural description of a generic n-bit barrel shifter
using the standard std_logic types is to be developed. The description
uses the Pass gate in partial VHDL code that is shown below. This
gate, the graphic notation of which is also shown below, has a source
input and a gate input and a drain output. When the gate is 1, the
output will be driven by the source; otherwise the output is at ‘Z’. The
inputs of the barrel-shifter structure are I and L. The data inputs are
provided on the I lines, and the number of rotates to left is indicated
by bits of the L inputs, e.g., L=00001000 rotates I to the left 4 places.
Shifted I appears on Z. A 4-bit shift adder shown here clarifies the
interconnection that is required. Complete the VHDL code shown
here to completely describe an n-bit barrel-shifter. Use generate-
statements and make sure your design is parameterized and expand-
able.

336 Chapter 8

ENTITY switch IS PORT
 (source, gate : IN std_logic; drain : OUT std_logic);
END ENTITY;
--
ARCHITECTURE assign OF switch IS BEGIN
 drain <= source WHEN gate = '1' ELSE 'Z';
END ARCHITECTURE;
--
ENTITY barrel_shifter IS PORT
 (ii, ll : IN std_logic_vector;
 zz : OUT std_logic_vector BUS);
END ENTITY;
--
ARCHITECTURE switch_level OF barrel_shifter IS
 . . .
BEGIN
 . . .
END switch_level;

ENTITY barrel_shifter_tester IS END ENTITY;
--
ARCHITECTURE input_output OF barrel_shifter_tester IS
 SIGNAL ii, ll, zz : std_logic_vector (7 DOWNTO 0);
BEGIN
 shifter:ENTITY WORK.barrel_shifter PORT MAP (ii,ll,zz);
 ii <= X"00", X"F5" AFTER 20 US, X"45" AFTER 40 US,
 X"4B" AFTER 60 US;
 ll <= X"00", X"01" AFTER 10 US, X"04" AFTER 20 US,
 X"02" AFTER 30 US, X"80" AFTER 40 US,
 X"00" AFTER 50 US, X"01" AFTER 60 US;

END ARCHITECTURE;

Hardware Cores and Models 337

8.5 Write a two-dimensional unconstrained n m clocked memory.
The memory has a log2 (n) bit address bus and an m bit bidirectional
Databus. Reading from the memory is done when CE is ‘1’ and RW is
‘1’. Writing takes place on the rising edge of the clock when CE is ‘1’.
Represent each memory cell with a guarded block statement. Write
nested generate statements for the array. Write and wire an uncon-
strained decoder to the array.

8.6 Write a behavioral description for a 16 bit serial adder circuit.
Sixteen bits of A and B operands are serially fed into the circuit syn-
chronized with a main clock signal. The least significant bits of the
operands are received first. The start of data is signaled by a syn-
chronous ‘1’ on the start input. The least significant bits of data are
received on the A and B inputs during the clock pulse that follows the
start of the add operation. After sixteen clock pulses, the add opera-
tion is complete and the result will be available on sixteen parallel
data lines. At this time the done output of the circuit becomes ‘1’ and
stays at this level until the next serial add operation starts again.

Hardware implementation of this circuit requires a flip-flop for
saving intermediate carry values, and a shift register for shifting in
the serial results. However, you are to write a behavioral description
and not concerned with its hardware implications. Your description
should be accurate at the clock level. It is possible to write a single
process statement to describe the complete circuit behavior. Input
and output ports of your architecture should match those of the ac-
tual circuit. Use BIT type for all signals.

8.7 A data processing circuit is to be designed for receiving data sets
and outputting the largest data that appears in a data set. The ma-
chine has an 8-bit datain input, a one-bit avail input, a one bit ready
output and an 8-bit largest output. All data are considered to be 8 bit
positive numbers. The machine receives data while avail is ‘1’ and
makes the largest 8-bit data available on largest as soon as a data set
is completed. Synchronous bytes of a data set appear on datain while
avail is ‘1’. A data set begins when avail becomes 1 and continues
while this input is ‘1’. Termination of a data set is indicated by avail
becoming ‘1’. While a new data set is being received, ready is 0, and
the largest data from the last data set appears on the 8-bit largest.
When avail becomes 0 machine resets, largest is updated, ready be-
comes 1, and it becomes ready for the next data set. A) Write VHDL
description of the datapath this machine. Use signal assignments,
conditional assignments, process statements, and block statements
for describing components of the datapath. It is not necessary to gen-
erate separate entity-architecture pairs for each of the data compo-
nents; you can describe gates, registers, comparators, multiplexers,

338 Chapter 8

and other functions in the concurrent body of the datapath. B) Show
VHDL description for the controller state machine of this circuit. The
controller receives input handshaking signals and issues output ready
signal as well as signals controlling the flow of data in the registers of
the datapath. C) Wire the controller and the datapath to form the
complete circuit. Use std_logic and arithmetic IEEE packages.

8.8 Given the following state machine description, 1) Show the state
diagram this description is implementing. 2) Add an asynchronous
reset to this description.

ENTITY mooreb IS PORT
 (data, clock : IN BIT; outz, waiting : OUT BIT);
END mooreb;
--
ARCHITECTURE synthesizable OF mooreb IS
 TYPE state IS (aa, bb, cc, dd);
 SIGNAL nxt, present : state;
BEGIN
 reg : PROCESS (clock)
 BEGIN
 IF (clock'EVENT AND clock = '1') THEN
 present <= nxt;
 END IF;
 END PROCESS;
 --
 logic : PROCESS (present, data)
 BEGIN
 CASE present IS
 WHEN aa =>
 IF data = '0' THEN nxt <= aa;
 ELSE nxt <= bb; END IF;
 WHEN bb =>
 IF data = '0' THEN nxt <= cc;
 ELSE nxt <= bb; END IF;
 WHEN cc =>
 IF data = '0' THEN nxt <= aa;
 ELSE nxt <= dd; END IF;
 WHEN dd =>
 IF data = '0' THEN nxt <= cc;
 ELSE nxt <= bb; END IF;
 END CASE;
 END PROCESS;
 outz <= ‘1’ WHEN present = dd ELSE ‘0’;
 waiting <= '1' WHEN present = aa ELSE ‘0’;
END synthesizable;

8.9 Design and implement a high level model for NoC switches with
five identical ports, routing logic, and a routing table. Each port con-
tains an input buffer for storing the incoming packets. Each packet

Hardware Cores and Models 339

must be a record of data and include a header that determines the
destination address, and a data payload. When a packet arrives, it
will be stored in the input buffer. The router continuously checks the
received packets, and according to their destinations routes them to
the appropriate output port. The input buffer is a circular FIFO for
storing input packets of neighboring switches.

For the routing algorithm, you can use a simple round-robin
method. Destination addresses must be stored in the routing table
using a static routing methodology. Use an extra field in each packet
for indicating how long it has taken the packet to arrive at its desti-
nation. A simple measure of this timing is the number of switches a
packet has traveled through. In your parametric design you must use
high level structures of VHDL.

8.10 A small processor is to be designed. The processor is so unrealis-
tically small that we call it Unrealistic Small Processor or USP. The
processor has 4 instructions. An instruction is always only one byte
long. Two bits are the opcode and six bits are address to a 64-byte
memory. The instructions are store, load, jump and add. For these
instructions, opcodes are 00, 01, 10 and 11 respectively. The store in-
struction stores contents of AC in memory location addressed by the

340 Chapter 8

6-bit address. The load instruction loads AC with contents of the
memory. The jump instruction causes the next instruction to be
fetched from the memory location specified by the 6-bit address of
this instruction. The add instruction adds memory addressed by the
address field to AC and puts the result in AC. Develop code for the
individual components of this machine (ir, ac, pc, and alu); show the
datapath using component instantiations and bus specifications.
Show the complete CPU. Use std_logic and related arithmetic pack-
ages. All types must be of the std_logic type. All codes must be syn-
thesizable. Memory read and write are done in one cycle using
rd_mem and wr_mem.

Suggested Reading
Bhasker, Jayaram, A VHDL Primer, 3rd edition, 1998, Prentice Hall

PTR, ISBN: 978-0130965752.
Chu, Pong, RTL Hardware Design Using VHDL: Coding for Effi-

ciency, Portability, and Scalability, 2006, Wiley-IEEE Press,
ISBN: 0471720925.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference
Manual, SH94983-TBR (print) SS94983-TBR (electronic), ISBN 0-
7381-3247-0 (print) 0-7381-3248-9 (electronic), 2002.

IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer
Level (RTL) Synthesis, SH95242 (print) SS95242 (electronic),
ISBN 0-7381-4064-3 (print) 0-7381-4065-1 (electronic), 2004.

Navabi, Zainalabedin, Embedded Core Design with FPGAs, 2006,
McGraw Hill-Professional, ISBN: 0071474811.

Perry, Douglas L., VHDL: Programming by Example, 4th edition,
2002, McGraw-Hill Professional, ISBN: 978-0071400701.

Rushton, Andrew, VHDL for Logic Synthesis, 2nd edition, 1998, John
Wiley & Sons, ISBN: 047198325X.

341

9Core Design Test and Testability

The previous chapters discussed VHDL for describing components
that can be used in design of a digital system as cores or subcompo-
nents. Except for a few cases, and in a very limited way, we did not
discuss ways of testing these components. Or, at least, we did not
elaborate on efficient design test methodologies.
 In addition to design test, post manufacturing test is also impor-
tant for a designer to consider. Furthermore, there are many areas of
overlap between design test methodologies, and post manufacturing
test. Post-manufacturing test may require test and simulation of a
pre-manufacturing model to develop methods and test data for it.
 This chapter discusses the “test” issue. In the first part of the
chapter we start with simple test cases and develop techniques for
data generation and application. We will use an accumulation of sev-
eral of these techniques to test several of the cores discussed in the
previous chapter. In the second part of this chapter, we discuss test-
ability methods incorporated into cores. We show testbenches indicat-
ing utilization of such testability methods.

9.1 Issues Related to Design Test
This section introduces some of the vocabularies and terminologies
associated with issues related to testing a design. Sections that follow
this introductory section, discuss techniques for testing the VHDL
description of a design. After completing discussion of design test, a

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

342 Chapter 9

similar section will be devoted to manufacturing test before we dis-
cuss testable VHDL designs.

9.1.1 Design Test
Design test refers to the process of testing a design and verifying that
the design meets the required specs. In the HDL world, design test
usually means HDL simulation and response verification.
 In addition to simulation, verification of a design can be per-
formed by formal verification methods. As an alternative to formal
verification, dynamic verification methods verify designs by means of
simulation and response assertions.
 In the context of this chapter, design test means application of
test data to a design under test (DUT), simulating the design and
verifying the output.

9.1.2 Testbench
VHDL simulation environments provide tools for graphical or textual
display of simulation results. Some simulation environments go fur-
ther, and provide graphical tools for editing input test data to a de-
sign module that is being tested. Such tools are referred to as wave-
form editors, and are usually good for small designs. They become too
complex to use for design with many busses and control signals. An-
other problem with waveform editors is that each simulation envi-
ronment uses a different procedure for waveform editing, and moving
from one simulator to another requires relearning a whole new set of
procedures.
 This problem can be alleviated by use of VHDL testbenches. A
VHDL testbench is a VHDL entity-architecture pair that instantiates
DUT applies data to it and monitors its output. Because a testbench
is in VHDL, it can go from one simulation environment to another. A
design module and its corresponding testbench form a simulation
model in which DUT is tested for the same input data regardless of
what simulation environment is used.
 To facilitate development of testbenches, some simulation envi-
ronments provide testbench tools that automatically generate a tem-
plate testbench. Such tools also provide ways of inserting templates
for generation of test data for applying them to DUT. Using templates
is helpful, but a designer must understand testbenches and language
constructs that are used for testing a design module.

Core Design Test and Testability 343

9.1.3 Coverage
When verifying a design by simulation or by a formal verification
method, coverage referrers to the percent of the design that has been
exercised. For simulation, a testbench applies data to a DUT, test
data generated by the testbench reach certain parts of a circuit and
may never create activities in other parts. A good testbench uses a
minimum set of data to cover testing of the largest possible portion of
the circuit.
 Design coverage in the context of VHDL, or other HDLs, is
measured by various code coverage methods. Code coverage is the
amount of VHDL code covered by a testbench. Code coverage may
consist of line coverage (number of lines covered), block coverage
(blocks of code between conditions covered), condition coverage (num-
ber of conditional statements exercised), and perhaps other code re-
lated methods.
 Generally, simulation tools provide a coverage measure after
simulation is complete. A testbench developer should make adjust-
ment to his or her testbench and/or test data for best coverage in the
shortest simulation time.

9.2 Simple Testbenches
Before we start with the presentation of various techniques of test
data generation and response monitoring, we present simple test-
bench examples for circuits that we have discussed in the previous
chapters. A combinational and a sequential circuit are being consid-
ered here.

9.2.1 Combinational Circuit Testing
Developing a testbench for a combinational circuit is straight for-
ward; however selection of data and how much testing should be done
depends on the CUT (circuit under test) and its functionality. Chap-
ter 8 presented a simple ALU (Figure 8.3) that we use here to test.
Entity declaration and its port declarations are repeated in Figure 9.1
for reference.
 A testbench for alu is shown in Figure 9.2. The declarative part
of the testbench declares every port of the CUT as signals. The first
statement in this testbench is an instantiation statement instantiat-
ing our CUT. Association by name is used for associating testbench
signals with ports of CUT.

344 Chapter 9

ENTITY alu IS
 PORT (a, b : IN std_logic_vector;
 add_sub : IN std_logic;
 func : IN std_logic_vector (1 DOWNTO 0);
 y : OUT std_logic_vector;
 gt, eq, lt, co : OUT std_logic
);
END ENTITY;

Figure 9.1 Ports of alu Being Tested

 The procedural architecture of alu of Figure 8.3 implements a
five-function alu with add, subtract, and logical operators. The ALU
has compare outputs that are driven by a comparator and a vector
output that is the result of the ALU operation.
 Assignment of values to the various inputs of CUT are done dif-
ferently. For the ai input, an initial value is set when ai is declared,
and it is kept throughout the simulation. For bi, timed data at 20 ns
time intervals are assigned to it. The add-subtract input (asi signal)
is held at ‘0’ until it changes to ‘1’ at 80 ns.
 As input data are changing, the ALU function input (fni) starts
at 0 and is incremented every 23 ns. This incrementing guarantees
that our ALU is tested for every one of its functions. Incrementing fni
stops when simulation time reaches 160 ns. The VHDL NOW func-
tion returns the current simulation time.

ENTITY alu_tester IS END ENTITY;
--
ARCHITECTURE timed OF alu_tester IS
 SIGNAL ai : std_logic_vector (3 DOWNTO 0) := "0110";
 SIGNAL bi : std_logic_vector (3 DOWNTO 0) := "0100";
 SIGNAL asi: std_logic;
 SIGNAL fni : std_logic_vector (1 DOWNTO 0) := "00";
 SIGNAL yo : std_logic_vector (3 DOWNTO 0);
 SIGNAL go, eo, lo, co : std_logic ;
BEGIN
 CUT: ENTITY WORK.alu (procedural) PORT MAP
 (a => ai, b => bi,
 add_sub => asi,
 func => fni,
 y => yo,
 gt => go, eq => eo, lt => lo, co => co);
 bi <= "0011" AFTER 020 NS, "1110" AFTER 040 NS,
 "1000" AFTER 060 NS, "0111" AFTER 080 NS,
 "1001" AFTER 100 NS, "1100" AFTER 120 NS;
 asi <= '0' AFTER 10 NS, '1' AFTER 80 NS;
 fni <= fni + 1 AFTER 23 NS WHEN NOW <= 160 NS ELSE fni;
END ARCHITECTURE timed;

Figure 9.2 Testbench for alu(procedural)

Core Design Test and Testability 345

 Exhaustive testing of a large ALU where all its inputs receive
every possible value is too time consuming, and cannot be done. How-
ever, testing every ALU function while some random data is being
applied to its data inputs is possible and provides a good means of
testing the ALU.
 The above simulation ends when no more events occur in the
simulation model. The fni signal has its last event at 161 ns. Figure
9.3 shows the simulation run of the timed alu_tester testbench.

Figure 9.3 alu Simulation Results

9.2.2 Sequential Circuit Testing
Testing sequential circuits involves synchronization of various data
inputs with the circuit clock and with each other. We demonstrate a
simple template in this section, and synchronization and other more
complex issues will be discussed in the next section. The circuit we
are testing here is the shift register of Chapter 8 presented in Figure
8.6. The entity declaration of this circuit is repeated in Figure 9.4 for
reference. This shift register has INOUT bidirectional port (dio) that
must either be driven from the inside of the shift register or by the
testbench. The testbench must make sure no data is put on this port
when the shift register is expected to drive it.
 The testbench for shift_reg is shown in Figure 9.5. The format of
the testbench is basically the same as the one shown in Figure 9.2.
Some of the shift register inputs are driven by signal assignments,
but the majority is driven by conditional signal assignments using the
NOW function.

346 Chapter 9

ENTITY shift_reg IS
 PORT (clk, ld, rst, l_r, shen, s_in, oe : IN std_logic;
 dio : INOUT std_logic_vector);
END ENTITY;

Figure 9.4 Shift Register Entity Declaration

 The circuit clock is a periodic signal with a 10 ns period. The dio
bidirectional input is incremented by 3 every 19 ns until simulation
time reaches 93 ns, at which time it becomes high impedance, allow-
ing the shift register to drive the bus. Periodic signals with different
frequencies are put on ld, shen, s_in, and oe to cause them to exercise
different functions of the shift register.

ENTITY shift_reg_tester IS
END ENTITY;
--
ARCHITECTURE timed OF shift_reg_tester IS
 SIGNAL clk, shen, rst, l_r : std_logic := '0';
 SIGNAL ld, s_in, oe : std_logic := '1';
 SIGNAL dio : std_logic_vector (3 DOWNTO 0) := "1001";
BEGIN
 UUT1: ENTITY WORK.shift_reg (synch)
 PORT MAP (clk, ld, rst, l_r, shen, s_in, oe, dio);

 rst <= '0', '1' AFTER 003 NS, '0' AFTER 010 NS,
 '1' AFTER 120 NS, '0' AFTER 127 NS;
 ld <= NOT ld AFTER 37 NS WHEN NOW <= 97 NS ELSE '0';
 shen <= NOT shen AFTER 35 NS WHEN NOW <= 113 NS
 ELSE '0';
 l_r <= '0' , '1' AFTER 20 NS, '0' AFTER 40 NS;
 s_in <= NOT s_in AFTER 10 NS WHEN NOW <= 75 NS ELSE '0';
 oe <= '0', '1' AFTER 97 NS, '0' AFTER 113 NS;
 dio <= dio + 3 AFTER 19 NS WHEN NOW <= 93 NS
 ELSE (OTHERS => 'Z');
 clk <= NOT clk AFTER 5 NS WHEN NOW <= 133 NS ELSE '0';
END ARCHITECTURE timed;

Figure 9.5 Shift Register Testbench

9.3 Testbench Techniques
Various VHDL coding techniques for generation of test data and ob-
serving circuit responses are discussed in this section. We use state
machines of Chapter 8 as our test modules. The first example is a 101
Moore detector circuit depicted in Figure 9.6.

Core Design Test and Testability 347

ENTITY moore_detector IS
 PORT (x, rst, clk : IN STD_LOGIC; z : OUT STD_LOGIC);
END ENTITY ;
--
ARCHITECTURE procedural OF moore_detector IS
 TYPE state IS (reset, got1, got10, got101);
 SIGNAL current : state := reset;
BEGIN
 PROCESS (clk) BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF rst = '1' THEN
 current <= reset;
 ELSE
 CASE current IS
 WHEN reset =>
 IF x = '1' THEN current <= got1;
 ELSE current <= reset; END IF;
 WHEN got1 =>
 IF x = '0' THEN current <= got10;
 ELSE current <= got1; END IF;
 WHEN got10 =>
 IF x = '1' THEN current <= got101;
 ELSE current <= reset; END IF;
 WHEN got101 =>
 IF x = '1' THEN current <= got1;
 ELSE current <= got10; END IF;
 WHEN OTHERS => current <= reset;
 END CASE;
 END IF;
 END IF;
 END PROCESS;
 z <= '1' WHEN current = got101 ELSE '0';
END ARCHITECTURE;

Figure 9.6 A 101 Moore Detector For Test

 The VHDL code shown in this figure is synthesizable. It has a
synchronous reset and produces a ‘1’ on its output when the state of
the machine reaches the got101 state.

9.3.1 Arbitrary Test Data
A simple testbench for moore_detector of Figure 9.6 is shown in
Figure 9.7. As before, our testbench is an entity with no ports. Within
the timed architecture of this testbench, three concurrent signal as-
signments provide data for testing the state machine. The signals on
the left hand sides of these assignments are connected to the ports of
moore_detector.

348 Chapter 9

ENTITY moore_detector_tester IS
END ENTITY;
--
ARCHITECTURE timed OF moore_detector_tester IS
 SIGNAL x, reset, clk, z : std_logic := '0';
BEGIN
 MUT: ENTITY WORK.moore_detector(procedural)
 PORT MAP (x, reset, clk, z);

 reset <='1', '0' AFTER 24 NS;
 x <= NOT x AFTER 7 NS WHEN NOW <= 189 NS;
 clk <= NOT clk AFTER 5 NS WHEN NOW <= 189 NS;
END ARCHITECTURE;

Figure 9.7 A Simple Testbench for moore_detector

 The testbench shown, puts a periodic signal on the clk input, and
another periodic signal with a different frequency on the x input. The
clk and x signals toggle every 5 ns and 7 ns respectively. Both signals
cease toggling at time 189 ns. At this time, since no more events occur
in our simulation model, the simulation stops. It is a good practice to
make sure that a testbench eventually stops itself. This way, we do
not have to watch the simulation run for a desired simulation time to
arrive. Trying to stop the simulation manually generally results in
longer than necessary simulation runs.
 With arbitrarily selecting the timing of clk and x, the waveform
generated on x may or may not be able to test our machine for a cor-
rect 101 sequence. However, periods of clk and x can be changed to
make this happen. With the timing used here, the moore_detector
output becomes 1 at 55 ns, and every 70 ns from then on until the
simulation stops a little after 189 ns.

9.3.2 Random Test Data
This section develops a random number generation function that will
be used in this and the next two sections. Instead of assigning a peri-
odic signal to the input x of the moore_detector, we use our random
function generator to assign random data to x.

9.3.2.1 Random Procedure. Figure 9.8 shows our TestPack package
that declares and defines our random procedure. In addition to the
standard libraries that we have discussed so far, this package also
uses the IEEE math_real package. This package contains mathemati-
cal functions and constants, such as SIN, COS, LOG, and PI. The
function we use here is UNIFORM that returns a pseudo-random
number with uniform distribution in the open interval (0.0, 1.0). The
declaration of math_real package appears in Appendix I.

Core Design Test and Testability 349

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_arith.ALL;
USE IEEE.std_logic_unsigned.ALL;
USE IEEE.math_real.ALL;

PACKAGE TestPack IS
 PROCEDURE random (VARIABLE seed1, seed2 : INOUT INTEGER;
 SIGNAL target : INOUT std_logic_vector);
END PACKAGE TestPack;

PACKAGE BODY TestPack IS
 PROCEDURE random (VARIABLE seed1, seed2 : INOUT INTEGER;
 SIGNAL target : INOUT std_logic_vector) IS

 VARIABLE ti : INTEGER;
 VARIABLE size : INTEGER := target'LENGTH;
 VARIABLE tmp : std_logic_vector (size-1 DOWNTO 0);
 VARIABLE rand, within : REAL;
 BEGIN
 UNIFORM (seed1, seed2, rand);
 within := 2.0**size;
 ti := INTEGER (rand * within);
 target <= conv_std_logic_vector (ti, size);
 END PROCEDURE random;
END PACKAGE BODY TestPack;

Figure 9.8 Test Package for Random Number Generation

 The random procedure shown in Figure 9.8 uses seed1 and seed2
to pass to UNIFORM for making the random number. The seeds are
used and modified by UNIFORM for the next time it is called. As
seen, the mode of these parameters of random is INOUT so that they
can be modified. Output of random is target that is a signal of
std_logic_vector type.
 In the body of random, UNIFORM is called and returns rand of
REAL type, which is between 0.0 and 1.0. Based on the size of target,
within is calculated that becomes the range of unsigned integer that a
binary number of target size can take. The value assigned to target
becomes within multiplied by rand converted to std_logic_vector.
 As mentioned, using random requires variables associated with
seed1 and seed2 to be saved in the calling program. Furthermore, a
design using random must use the TestPack of Figure 9.8.

9.3.2.2 Assigning Random Data to Signals. The VHDL code in
Figure 9.9 uses our random procedure to assign random values to x.
This testbench tests the moore_detector of Figure 9.6. Since random
was developed for the general case of a vector target, we have used
the one bit std_logic_vector type signal x to associate with the x scalar
input of our moore_detector.

350 Chapter 9

ENTITY moore_detector_tester IS END ENTITY;
--
ARCHITECTURE timed OF moore_detector_tester IS
 SIGNAL x : std_logic_vector(0 DOWNTO 0) := "0";
 SIGNAL clk : std_logic := '0';
 SIGNAL reset : std_logic := '1';
 SIGNAL z : std_logic;
BEGIN
 MUT: ENTITY WORK.moore_detector(procedural)
 PORT MAP (x(0), reset, clk, z);

 reset <= '0' AFTER 24 NS;

 SetX: PROCESS
 VARIABLE seed1, seed2 : POSITIVE := 14;
 BEGIN
 FOR i IN 0 TO 27 LOOP
 WAIT FOR 7 NS;
 random (seed1, seed2, x);
 END LOOP;
 WAIT;
 END PROCESS;

 SetC: PROCESS
 BEGIN
 FOR i IN 0 TO 36 LOOP
 WAIT FOR 5 NS;
 clk <= NOT clk;
 END LOOP;
 WAIT;
 END PROCESS;
END ARCHITECTURE;

Figure 9.9 Random Data Testbench

 The testbench shown in Figure 9.9 uses a for-loop statement in
the SetX process to call random and assign the resulting vector to x.
The for loop shown calls random every 7 ns for 28 times. After this
time, a wait statement suspends the SetX process forever. This proc-
ess declares seed1 and seed2 for our random procedure and initializes
them to 14. Any initial value can be used here, and absence of that
would assume an initial value of 1. Figure 9.10 shows a simulation
run of the VHDL code of Figure 9.9.
 The testbench of Figure 9.9 uses a for loop similar to that dis-
cussed above for assigning values to the circuit clock. This is a more
general format than the simple conditional signal assignment used in
Figure 9.7. The format used here (see SetC process in Figure 9.9) al-
lows changing the frequency of the clock, or even assigning non peri-
odic values to this signal.

Core Design Test and Testability 351

Figure 9.10 Random Data Generated on x

9.3.2.3 Random Timing. A random function can be written to return
integers in a given range. This function can then be used for assign-
ment of values to a signal at random time values. For example, sup-
pose irandom, the declaration of which is shown below, returns an
integer in the range of 0 to limit in its intran parameter.

 PROCEDURE irandom(VARIABLE seed1, seed2: INOUT INTEGER;
 CONSTANT limit: INTEGER;
 VARIABLE intran: OUT INTEGER);

In order to make a wait-statement wait a random amount of time, the
following must be done:

irandom (seed1, seed2, 23, int);
 WAIT FOR int * 1 ns;

The above example makes the range of the wait time between 0 and
23 nanoseconds.

9.3.3 Applying Synchronized Data
The previous examples of testbenches for DUT used independent tim-
ing for the clock and data. Where several sets of data are to be ap-
plied, synchronization of data with the system clock becomes difficult.
Furthermore, changing the clock frequency would require changing
the timing of all data inputs of the module being tested.
 The testbench of this section (Figure 9.11), that is written for the
moore_detector of Figure 9.6, uses a process statement to synchronize
data applied to x with the clock that is generated in the testbench.
The clk signal is generated in a process statement using a for-loop. As
shown in Figure 9.11, the SetX process loops forever waiting for the
positive edge of clk. When found, 3 ns later a new random data is
generated for x. The stable data after the positive edge of the clock
will be used by moore_detector on the next leading edge of the clock.

352 Chapter 9

This technique of data application guarantees that changing of data
and clock do not coincide.
 The 3 ns delay used here makes it possible to use this same test-
bench for simulating post-synthesis designs as well as behavioral de-
scriptions like that of Figure 9.6. In a post-synthesis simulation, in
which component models with actual delay values are used, testbench
delays should allow propagation of test signals to complete before ap-
plication of new test data.

ENTITY moore_detector_tester IS END ENTITY;
--
ARCHITECTURE timed OF moore_detector_tester IS
 SIGNAL clk : std_logic := '0';
 SIGNAL x : std_logic_vector (0 TO 0) := "0";
 SIGNAL reset : std_logic := '1';
 SIGNAL z : std_logic;
BEGIN
 MUT : ENTITY WORK.moore_detector(procedural)
 PORT MAP (x(0), reset, clk, z);

 reset <= '0' AFTER 24 NS;

 Set_X: PROCESS
 VARIABLE seed1, seed2 : POSITIVE := 14;
 BEGIN
 WAIT UNTIL clk = '1';
 WAIT FOR 3 NS;
 random (seed1, seed2, x);
 END PROCESS;

 Set_C: PROCESS
 BEGIN
 FOR i IN 0 TO 13 LOOP
 WAIT FOR 5 NS;
 clk <= NOT clk;
 END LOOP;
 WAIT;
 END PROCESS;
END ARCHITECTURE;

Figure 9.11 Clock Synchronized Data Application

9.3.4 Synchronized Display of Results
The technique used in the previous section can be used for synchro-
nized observation of DUT outputs or internal signals.
 Figure 9.12 shows another testbench for our moore_detector. In
this testbench, 1 ns after the positive edge of the clock, that is when

Core Design Test and Testability 353

the circuit output is supposed to have its new stable value, the z out-
put is displayed using the REPORT statement. Since REPORT takes
a string argument, z that is of std_logic type is turned into string us-
ing the ‘IMAGE attribute.

ENTITY moore_detector_tester IS END ENTITY;
--
ARCHITECTURE timed OF moore_detector_tester IS
 SIGNAL clk : std_logic := '0';
 SIGNAL x : std_logic_vector (0 TO 0) := "0";
 SIGNAL reset : std_logic := '1';
 SIGNAL z : std_logic;
BEGIN
 MUT : ENTITY WORK.moore_detector(procedural)
 PORT MAP (x(0), reset, clk, z);

 reset <= '0' AFTER 24 NS;

 setX: PROCESS . . .

 setC: PROCESS . . .

 display: PROCESS(clk)
 BEGIN
 IF (clk = '1') AND clk'EVENT THEN
 REPORT "Z:"&std_logic'IMAGE(z);
 END IF;
 END PROCESS;

END ARCHITECTURE;

Figure 9.12 Clock Synchronized Output Display

9.3.5 Displaying Interval Objects
In order for a testbench to display signals of a DUT, the signals must
be declared in a package instead of being declared in the design. Such
signals can be used by the design just like its own signals, and can be
read and displayed by the design entity that uses the shared package.
 The same can be done for variables used in processes of a design
that is being tested, except that the design variables must be declared
as shared variables in the package.
 We demonstrate the former (visibility of design signals) by use of
our moore_detector of Figure 9.6. The signal to be displayed by the
testbench of this design is current. The package shown in Figure 9.13
declares the current signal used in Figure 9.14.

354 Chapter 9

PACKAGE moore_observe IS
 TYPE state IS (reset, got1, got10, got101);
 SIGNAL current : state := reset;
END PACKAGE moore_observe;

Figure 9.13 Package for Upper-level Observabiliy

The moore_detector description must be modified to use the
above package, and comment out its own state type and current signal
declarations. With these changes, the testbench shown in Figure 9.14
displays current, that is the state of the moore_detector circuit, any
time a change occurs on this signal.

USE WORK.moore_observe.ALL;

ENTITY moore_detector_tester IS END ENTITY;
--
ARCHITECTURE timed OF moore_detector_tester IS
 SIGNAL clk : std_logic := '0';
 SIGNAL x : std_logic_vector (0 TO 0) := "0";
 SIGNAL reset : std_logic := '1';
 SIGNAL z : std_logic;
BEGIN
 MUT : ENTITY WORK.moore_detector(procedural)
 PORT MAP (x(0), reset, clk, z);

 reset <= '0' AFTER 24 NS;

 SetX: PROCESS . . .

 SetC: PROCESS BEGIN . . .

 m_state: PROCESS (current) BEGIN
 REPORT "current state is: " & state'IMAGE(current);
 END PROCESS;

 display: PROCESS (z) BEGIN
 REPORT "Z:"&std_logic'IMAGE(z);
 END PROCESS;

END ARCHITECTURE;

Figure 9.14 Displaying Design Signals From its Testbench

The m_state process of this testbench is sensitive to current. This
signal is made visible to this testbench by the use of the use-
statement at the beginning of the testbench. When current changes,
the m_state process wakes up and reports the value of current. This
testbench also displays z that is a local signal of the testbench.

Core Design Test and Testability 355

 The method described above becomes difficult to use if a design
uses multiple instances of a lower level component, and a signal in
these components is to be observed. An alternative solution is to re-
port the value of the signal from within the design itself. For exam-
ple, the m_state process of Figure 9.14 can move into the original de-
scription of moore_detector. In this case, to distinguish between re-
ports coming from different instances of the same component, the
‘INSTANCE-NAME or ‘PATH-NAME attributes can be used. For ex-
ample, the report statement shown below reports current and the
complete path name of the instance from which the report is being
issued.

REPORT “current state of” & current ‘PATH-NAME &
 “is:” & state ‘IMAGE (current);

9.3.6 An Interactive Testbench
For the next series of testbenches, we use a different state machine.
This is a 1101 Moore detector with start and rst control inputs. If
start becomes ‘0’ while searching for 1101, the machine resets to its
initial state. As shown in Figure 9.15 this circuit has 5 states, and its
output becomes ‘1’ when it reaches state got1101. The extra start in-
put of this machine makes it more controllable, and allows a better
interaction with its testbench.
 Figure 9.16 shows an interactive testbench for testing the state
machine of Figure 9.15. The testbench applies a periodic signal to the
circuit clock and random data to the x input of the moore_detector.
 As data are being applied to the machine, the SetS process looks
for two consecutive transitions on the z output of the state machine.
The two consecutive transitions mean a complete pulse on z. When
the random data on x have been able to generate a pulse on z, the
testbench restarts the machine by setting start to ‘0’ and back to ‘1’.
The for-loop in the process statements repeats searching for z and
restarting the machine three times. Each time the machine restarts,
it starts in state a. Figure 9.17 shows the waveform output of the
simulation run of our interactive testbench. The waveform also shows
the current signal that is the state of the Moore detector circuit.
 This example shows a simple interactive testbench where the
DUT was restarted based on conditions occurring in the circuit. A
more intelligent testbench can watch the interval signals of a DUT
and adapt its data accordingly. For example, a testbench can change
the seeds of its random generation procedure if it finds that the pre-
sent random data are not triggering enough activities in the circuit.

356 Chapter 9

ENTITY moore_detector IS
 PORT (x, start, rst, clk : IN std_logic;
 z : OUT std_logic);
END ENTITY ;
--
ARCHITECTURE procedural OF moore_detector IS
 TYPE state IS (reset, got1, got11, got110, got1101);
 SIGNAL current : state := reset;
BEGIN
 PROCESS (clk) BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF rst = '1' THEN

 current <= reset;
 ELSIF start = ‘0’ THEN
 Current <= reset;
 ELSE
 CASE current IS
 WHEN reset =>
 IF x = '1' THEN
 current <= got1;
 ELSE
 current <= reset; END IF;
 WHEN got1 =>
 IF x = '1' THEN
 current <= got11;
 ELSE
 current <= reset; END IF;
 WHEN got11 =>
 IF x = '1' THEN
 current <= got11;
 ELSE
 current <= got110; END IF;
 WHEN got110 =>
 IF x = '1' THEN
 current <= got1101;
 ELSE
 current <= reset; END IF;
 WHEN got1101 =>

 IF x = ‘1’ THEN
 current <= got11;
 ELSE
 current <= reset; END IF;
 WHEN OTHERS => current <= reset;

 END CASE;
 END IF;
 END IF;
 END PROCESS;
 z <= '1' WHEN current = got1101 ELSE '0';
END ARCHITECTURE;

Figure 9.15 Moore Sequence Detector Detecting 1101

Core Design Test and Testability 357

ENTITY moore_detector_tester IS END ENTITY;
--
ARCHITECTURE timed OF moore_detector_tester IS
 SIGNAL clk : std_logic := '0';
 SIGNAL x : std_logic_vector (0 TO 0) := "0";
 SIGNAL start, reset : std_logic := '1';
 SIGNAL z : std_logic;
BEGIN
 MUT : ENTITY WORK.moore_detector(procedural)
 PORT MAP (x(0), start, reset, clk, z);

 SetS: PROCESS
 BEGIN
 reset <= '0' AFTER 24 NS;
 start <= '1' AFTER 24 NS;
 FOR i IN 0 TO 2 LOOP
 WAIT ON z;
 WAIT ON z;
 start <= '0' AFTER 11 NS,'1' AFTER 24 NS;
 END LOOP;
 WAIT;
 END PROCESS;

 SetX: PROCESS
 VARIABLE seed1, seed2 : POSITIVE := 3;
 BEGIN
 WAIT UNTIL clk = '1';
 WAIT FOR 3 NS;
 random (seed1, seed2, x);
 END PROCESS;

 clk <= NOT clk AFTER 5 NS WHEN NOW <= 350 NS;

 END ARCHITECTURE;

Figure 9.16 An Interactive Testbench

Figure 9.17 Interactive Testbench Simulation Run

358 Chapter 9

9.3.7 Queued Data Application
None of the testbenches discussed so far applied a given set of test
data to the circuit input(s). The testbench we are discussing here uses
a queue to hold data to be applied to the DUT data input. We take
predefined series of bits and assign them to the x input of
moore_detector.
 As shown in Figure 9.18, the 19-bit queue in the SetX process is
initialized with test data. In this process statement, each bit of this
buffer is shifted out onto the x input of DUT 1 ns after the positive
edge of the clk clock. As data is shifted, queue is rotated in order for
the applied buffered data to be able to repeat. Start and stop control
of the state machine are done in the SetRS process statement. Figure
9.19 shows the simulation run waveform of this testbench.

ENTITY moore_detector_tester IS END ENTITY;
--
ARCHITECTURE timed OF moore_detector_tester IS
 SIGNAL x, start, rst, clk, z : std_logic := '0';
BEGIN
 MUT: ENTITY WORK.moore_detector(procedural)
 PORT MAP (x, start, rst, clk, z);
 SetRS: PROCESS BEGIN
 rst <= '1'; start <= '0';
 WAIT FOR 29 NS; rst <= '0';
 WAIT FOR 29 NS; start <= '1';
 WAIT;
 END PROCESS SetRS;
 SetX: PROCESS
 VARIABLE queue : std_logic_vector (18 DOWNTO 0)
 := "0001101101111001001";
 BEGIN
 WAIT UNTIL clk = '1';
 WAIT FOR 1 NS;
 x <= queue (queue'LEFT);
 queue := queue (queue'LEFT-1 DOWNTO 0) & x;
 END PROCESS SetX;
 SetClk: clk <= NOT clk AFTER 5 NS WHEN NOW <= 558 NS;

END ARCHITECTURE;

Figure 9.18 Applying Data from a Queue

Core Design Test and Testability 359

Figure 9.19 Queued Data Simulation Run

9.3.8 Text File Stimuli and Response
A very flexible way of applying data and displaying responses of a
circuit is reading and writing external data files. This is especially
useful when dealing with large sets of data. In this section, we dis-
cuss the TEXTIO example of Chapter 6 (Section 6.6.2) with some
modifications. The complete code of the testbench for an octal 2-to-1
multiplexer is shown in Figure 9.20.

The testbench shown has a GetData procedure for reading from a
declared file, and PutData for writing into one. The GetData proce-
dure reads from file f and schedules data of file f into its target s sig-
nal. Data in the data file must be preceded with the time that a par-
ticular data is to be assigned to the target signal. On the other hand,
PutData writes the time that is being called and the data of its w in-
put on one line of the file f that it is writing to.
 The testbench in Figure 9.20 has three concurrent invocations of
GetData for a, b, and s inputs of the multiplexer, respectively. As be-
fore, because GetData is written for the general case of a vector tar-
get, the s one bit input of the multiplexer has been declared as a one-
bit std_logic_vector.
 All three invocations of GetData are only called at the beginning
of the simulation at time 0. At this time Ain, Bin and Sin files are
read and appropriate values at appropriate times are scheduled into
a, b and s.
 The PutData invocation is also a concurrent procedure call in the
body of the multiplexer testbench. This procedure is called every time
an event occurs on w. When called, the present time and the value of
w are written into the file output of this procedure.

360 Chapter 9

ENTITY multiplexer8_tester IS
END ENTITY;
--
ARCHITECTURE timed OF multiplexer8_tester IS
 SIGNAL a, b, w1 : std_logic_vector (7 DOWNTO 0);
 SIGNAL s : std_logic_vector (0 TO 0) := "0";

 FILE Ain : TEXT OPEN READ_MODE IS "Ain.dat";
 FILE Bin : TEXT OPEN READ_MODE IS "Bin.dat";
 FILE Sin : TEXT OPEN READ_MODE IS "Sin.dat";
 FILE Wout : TEXT OPEN WRITE_MODE IS "Wout.dat";

 PROCEDURE GetData (SIGNAL s : OUT std_logic_vector;
 FILE f : TEXT) IS
 VARIABLE lbuf : LINE;
 VARIABLE t : TIME;
 VARIABLE d : std_logic_vector (s'RANGE);
 BEGIN
 WHILE NOT ENDFILE (f) LOOP
 READLINE (f, lbuf);
 READ (lbuf, t);
 READ (lbuf, d);
 s <= TRANSPORT d AFTER t;
 END LOOP;
 FILE_CLOSE (f);
 END PROCEDURE GetData;

 PROCEDURE PutData (w : IN std_logic_vector;
 FILE f : TEXT) IS
 VARIABLE lbuf : LINE;
 BEGIN
 WRITE (lbuf, NOW, RIGHT, 8, NS);
 WRITE (lbuf, w, RIGHT, 9);
 WRITELINE (Wout, lbuf);
 END PROCEDURE;

BEGIN

 UUT1: ENTITY WORK.multiplexer8 (conditional)
 PORT MAP (a, b, s(0), w1);

 GetData (a, Ain);
 GetData (b, Bin);
 GetData (s, Sin);
 PutData (w1, Wout);

END ARCHITECTURE timed;

Figure 9.20 File IO Testbench

Core Design Test and Testability 361

 Figure 9.21 shows the three input files and the output file used
by the testbench of Figure 9.20.

Figure 9.21 Testbench Input and Output Files

9.4 Complete System Testing
This section shows how the techniques discussed in the previous sec-
tion can be put together for testing complete systems. We will use the
techniques mentioned, and variations of these techniques for testing
the sequential multiplier and the adding processor of Chapter 8.

9.4.1 Multiplier Testing
The top-level entity declaration of the sequential multiplier of Chap-
ter 8 is shown in Figure 9.22. The multiplier has a bi-directional mul-
tiplexed input-output bus and several input and output control sig-
nals. All data in and out of the multiplier go through databus.

362 Chapter 9

ENTITY Multiplier IS
 PORT (clk, start : IN STD_LOGIC;
 databus : INOUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 lsb_out, msb_out, done : OUT STD_LOGIC);
END ENTITY;

Figure 9.22 Sequential Multiplier Interface

The testbench we are presenting for this circuit is an auto-check

interactive one, in which several forms of data applications and result
monitorings are demonstrated. The outline of timed architecture of
multiplier_tester testbench is shown in Figure 9.23.

ARCHITECTURE timed OF multiplier_tester IS
 SIGNAL clk, start, error : STD_LOGIC := '0';
 SIGNAL databus : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
 SIGNAL lsb_out, msb_out, done : STD_LOGIC;
 SIGNAL im_data : STD_LOGIC_VECTOR (7 DOWNTO 0) :=
 (OTHERS => 'Z');
 SIGNAL expected_result, multiplier_result :
 STD_LOGIC_VECTOR (15 DOWNTO 0);
 SIGNAL index : INTEGER := 0;

 FILE d_file1 : TEXT OPEN READ_MODE IS "data1.dat";
 FILE d_file2 : TEXT OPEN READ_MODE IS "data2.dat";

BEGIN
 uut : ENTITY WORK.Multiplier(structural) PORT MAP
 (clk, start, databus, lsb_out, msb_out, done);

 Apply_Data : PROCESS . . .
 Apply_Start : PROCESS . . .
 Expected_Results : PROCESS . . .
 Compare_Results: PROCESS . . .

 clk <= NOT clk AFTER 50 NS WHEN NOW <= 5000 NS ELSE '0';
 databus <= im_data;
END ARCHITECTURE timed;

Figure 9.23 Multiplier Testbench Outline

9.4.1.1 Testbench Declarations. The testbench declares signals to
be associated with the ports of the multiplier design. In addition,
there are signals for collecting the two bytes of the result and also for
calculating the expected multiplier result. The im_data intermediate
signal is declared for assignment of data to the bi-directional databus.
As shown in the last part of the testbench of Figure 9.23, im_data is
assigned to databus. When data is to be provided by the testbench to
the multiplier, im_data will contain that data. When the multiplier is
to drive databus with its output result, im_data must become high-

Core Design Test and Testability 363

impedance to allow the multiplier to drive the databus INOUT signal.
Also recall from Chapter 8 that, the multiplier itself drives its da-
tabus with all Zs when it is expecting to receive input data.
 Our testbench declares data1.dat and data2.dat data files that
contain data for the two operands of the multiplier. These files are
opened in the architecture and will be read and assigned to im_data.
 The testbench shown in Figure 9.23 applies three rounds of test
data to the Multiplier entity. In each round, data is applied to the de-
sign under test and results are read and compared with the expected
results. These are the tasks performed by this test bench:

Read data files data1.dat and data2.dat and apply data to da-
tabus
Apply start to start multiplication
Calculate the expected result
Wait for multiplication to complete, and collect the calculated
result
Compare expected and calculated results and issue error if
they do not match

These tasks are concurrent and are independently timed. Each task is
performed by an independent process statement.

9.4.1.2 Reading Data Files. Figure 9.24 shows the Apply_Data proc-
ess that is responsible for reading data and applying them to
im_data, which in turn goes on databus. Binary data from data1.dat
and data2.dat external files are read into tmp and then assigned to
im_data.

Apply_data : PROCESS
 VARIABLE tmp : std_logic_vector (7 DOWNTO 0);
 VARIABLE l1, l2 : LINE;
BEGIN
 FOR i IN 0 TO 2 LOOP
 READLINE (d_file1,l1);
 READLINE (d_file2,l2);
 WAIT UNTIL start = '1';
 READ (l1, tmp); im_data <= tmp;
 WAIT UNTIL clk = '1'; WAIT UNTIL clk = '1';
 READ (l2, tmp); im_data <= tmp;
 WAIT UNTIL clk = '1';
 im_data <= (OTHERS => 'Z');
 END LOOP;
 WAIT;
END PROCESS;

Figure 9.24 Apply-Data Process, Read Files Apply to DUT

364 Chapter 9

Data read from data2.dat is distanced from that of data1.dat by
two clock periods. This way, the latter is interpreted as data for the A
operand and the former for the B multiplication operand. After plac-
ing data and allowing the multiplier to register data, im_data be-
comes high impedance. This way, we are allowing databus to be
driven by the multiplier when its result is ready.

9.4.1.3 Applying Start. Figure 9.25 shows a process statement in
which the start signal is issued. Using a for loop, three 100 ns pulses
distanced by 1400 ns are placed on start.

Apply_Start : PROCESS BEGIN
 WAIT FOR 180 NS;
 FOR i IN 1 TO 3 LOOP
 WAIT FOR 50 NS; start <= '1';
 WAIT FOR 100 NS; start <= '0';
 WAIT FOR 1350 NS;
 END LOOP;
 WAIT;
END PROCESS;

Figure 9.25 Applying start

9.4.1.4 Calculating Expected Result. Figure 9.26 shows a process
statement that reads from im_data the same data that is being
placed on databus. Using this data that is generated by Apply_Data,
the Expected_Results process calculates the expected multiplication
result. After start, when im_data is updated, the first operand is read
into opnd1. The next time im_data changes, opnd2 is read. The ex-
pected result is calculated using these operands. Note that for detect-
ing new data assignments to im_data, the ‘TRANSACTION attribute
is used. Using this instead ‘EVENT, detects new data even if its value
is the same as the previous data on im_data.

Expected_Results : PROCESS
 variable opnd1, opnd2 : STD_LOGIC_VECTOR (7 DOWNTO 0);
BEGIN
 FOR i IN 1 TO 3 LOOP
 WAIT UNTIL start = '1';
 WAIT ON im_data'TRANSACTION;
 opnd1 := im_data;
 WAIT ON im_data'TRANSACTION;
 opnd2 := im_data;
 expected_result <= opnd1 * opnd2;
 END LOOP;
 WAIT;
END PROCESS;

Figure 9.26 Calculating Expected Results

Core Design Test and Testability 365

9.4.1.5 Reading Multiplier Output. When the multiplier completes
its task, it issues msb_out and lsb_out to signal that it has readied the
two bytes of the result. The process statement of Figure 9.27 is trig-
gered by the falling edge of the circuit clock. After a clock edge, if
msb_out or lsb_out is ‘1’, it reads the databus and puts in its corre-
sponding position in multiplier_result.

Actual_Result: PROCESS (clk) BEGIN
 IF(clk = '0' AND clk'EVENT) THEN
 IF (msb_out = '1') THEN
 multiplier_result (15 DOWNTO 8) <= databus;
 END IF;
 IF (lsb_out = '1') THEN
 multiplier_result (7 DOWNTO 0) <= databus;
 END IF;
 END IF;
END PROCESS;

Figure 9.27 Reading Actual Multiplier Results

9.4.1.6 Comparing Results. The last process statement in Figure
9.23 is for comparing actual and expected multiplication results. As
shown in Figure 9.28, if the result calculated by the testbench (ex-
pected_result) does not match the result calculated by our multiplier
RTL design (multiplier_result), an error flag is issued. This process
makes our multiplier testbench a self-checking one.

Compare_Results: PROCESS (clk) BEGIN
 IF(clk = '0' AND clk'EVENT) THEN
 IF (done = '1') THEN
 IF (multiplier_result /= expected_result) THEN
 error <= '1';
 ELSE error <= '0';
 END IF;
 END IF;
 END IF;
END PROCESS;

Figure 9.28 Comparing Actual and Expected Results

9.4.2 Processor Testing
This section discusses a testbench for the processor that we developed
in Chapter 8. The Adding processor, as discussed in Section 8.4.2, has
an 8-bit data bus and a 6-bit address bus.

366 Chapter 9

The testbench in this section uses an external file that contains
instructions to be executed. The testbench reads these instruction
mnemonics, converts them to binary numbers, applies them to the
processor model, and when the program execution is complete it
dumps the memory contents into an external file. Details of this test-
bench are discussed below.

9.4.2.1 Input File Format. An example file containing instructions
and data for our processor model is shown in Figure 9.29.

Figure 9.29 Instruction File Format

The instruction input file is called InstructionFile.mem. Each line of
this file begins with a hex number representing the memory location
of the instruction. The instruction mnemonic and its address follow
this location. Initialization of a memory location is done by “:::” code
instead of a mnemonic. For example line 2 of Figure 9.29 loads “0F”
in memory location “0F”.

9.4.2.2 Testbench Architecture. The testbench architecture for our
Adding CPU, shown in Figure 9.30, uses the TEXTIO and
std_logic_textio packages. The declarative part of this architecture
declares the necessary processor and memory interface signals and
the processor memory. The processor memory is a shared variable of
type memory and is initialized to all 0s. The declarative part of this
architecture also declares InstFile for the instruction file and HexFile
for the memory image file.
 The last item shown in the declarative part of file_oriented archi-
tecture of test_AddingCPU is the convert procedure that converts an
instruction file to a memory image and writes in into mem.
 The body of this architecture instantiates the processor under
test, generates a clock signal, initializes the memory image, and per-
forms read and write operations depending on instructions that are
executed.

Core Design Test and Testability 367

USE STD.TEXTIO.ALL;
USE IEEE.std_logic_textio.ALL;
--
ARCHITECTURE file_oriented OF Test_AddingCPU IS
 SIGNAL reset : std_logic := '1';
 SIGNAL clk, control : std_logic := '0';
 SIGNAL adr_bus : std_logic_vector(5 DOWNTO 0);
 SIGNAL rd_mem, wr_mem : std_logic;
 SIGNAL data_bus : std_logic_vector(7 DOWNTO 0);
 SIGNAL mem_data : std_logic_vector(7 DOWNTO 0)
 := (OTHERS => '0');
 TYPE memory IS
 ARRAY (0 TO 63) OF std_logic_vector(7 DOWNTO 0);
 SHARED VARIABLE mem : memory
 := (OTHERS => (OTHERS => '0'));
 FILE InstFile, HexFile: TEXT;
 PROCEDURE Convert IS . . . END PROCEDURE;
BEGIN
 UUT: ENTITY WORK.AddingCPU(structural)
 PORT MAP (reset, clk, adr_bus,
 rd_mem, wr_mem, data_bus);
 clk <= NOT clk AFTER 10 NS WHEN NOW <= 430 NS ELSE '0';

 FileInit: PROCESS . . . END PROCESS;

 MemReadWrite: PROCESS . . . END PROCESS;

 data_bus <= mem_data WHEN control='1'
 ELSE (OTHERS => 'Z');
END ARCHITECTURE;

Figure 9.30 Testbench Architecture Outline

9.4.2.3 Reading an Instruction File. Figure 9.31 shows the convert
procedure that reads an instruction file (InstructionFile.mem) and
write an initial memory image into mem.
 As shown in this figure, a while-loop handles reading instruction
lines, converting them to hex and writing them to mem. After reading
a line of instruction from the logical file InstFile, the address part of it
is read into addr using HREAD procedure of the std_logic_textio
package. The instruction part of this line is read into opcode using the
READ procedure.
 As shown in the convert procedure, a case statement converts
instruction mnemonics into their equivalent opcodes. For each line of
the instruction file, writeData is formed that is written into mem at
the addr location. Figure 9.32 shows an instruction file converted to
mem contents by the convert procedure.

368 Chapter 9

PROCEDURE Convert IS
 VARIABLE l1 : LINE;
 VARIABLE inst : STRING(1 TO 2) := "00";
 VARIABLE opCode : STRING(1 TO 5);
 VARIABLE data, writeData, addr:
 std_logic_vector(7 DOWNTO 0);
 VARIABLE JustData : std_logic;
BEGIN

 FILE_OPEN (InstFile, "InstructionFile.mem", READ_MODE);
 FILE_OPEN (HexFile, "HexadecimalFile.mem", WRITE_MODE);

 WHILE NOT ENDFILE (InstFile) LOOP
 READLINE (InstFile, l1);
 HREAD (l1, addr);
 READ (l1, opCode);
 JustData := '0';
 CASE opCode IS
 WHEN " lda " =>
 writeData(7 DOWNTO 6) := "00";
 WHEN " sta " =>
 writeData(7 DOWNTO 6) := "01";
 WHEN " jmp " =>
 writeData(7 DOWNTO 6) := "10";
 WHEN " add " =>
 writeData(7 DOWNTO 6) := "11";
 WHEN " ::: " =>
 JustData := '1';
 HREAD (l1, writeData);
 WHEN OTHERS =>
 JustData := '1';
 HREAD(l1, writeData);
 END CASE;

 IF JustData = '0' THEN
 HREAD(l1, data);
 writeData(5 DOWNTO 0) := data(5 DOWNTO 0);
 END IF;

 mem (conv_integer(addr)) := writeData;

 END LOOP;

 FILE_CLOSE(InstFile);
 FILE_CLOSE(HexFile);

END PROCEDURE;

Figure 9.31 Converting an Instruction File to memory image

Core Design Test and Testability 369

Figure 9.32 Instruction Mnemonics and Hex Memory Data

9.4.2.4 File Initialization and Dump. The FileInitDump process of
the testbench architecture is shown in Figure 9.33. In this process
statement, convert is called that fills mem. After allowing 405 ns for
the simulation run, this process opens the output memory image file
and writes contents of mem into this file.

PROCESS
 VARIABLE l1 : line;
 BEGIN
 Convert;
 WAIT FOR 25 NS;
 reset <= '0';
 WAIT FOR 405 NS;
 FILE_OPEN(HexFile,"HexadecimalFile.mem", WRITE_MODE);
 FOR i IN 0 TO 63 LOOP
 HWRITE(l1,mem(i));
 WRITELINE(HexFile,l1);
 END LOOP;
 FILE_CLOSE(HexFile);
 WAIT;
END PROCESS;

Figure 9.33 Hex File Initialization and Dump

370 Chapter 9

9.4.2.5 Memory Read Write. Our testbench uses a very simple mem-
ory model and simple read and write procedures. Figure 9.34 shows
the MemReadWrite process of our testbench.

PROCESS BEGIN
 WAIT UNTIL clk = '1' AND clk'EVENT;
 control <= '0';
 WAIT FOR 1 NS;
 IF rd_mem = '1' THEN
 WAIT FOR 1 NS;
 mem_data <= mem(conv_integer(adr_bus));
 control <= '1';
 END IF;
 IF wr_mem = '1' THEN
 WAIT FOR 1 NS;
 mem(conv_integer(adr_bus)) := data_bus;
 END IF;
END PROCESS;

Figure 9.34 Memory Read Write Process

Memory read and write operations are synchronized with the test-
bench clock. In all of the above processes and procedures,
conv_integer of std_logic_arith is used for indexing mem. Figure 9.35
shows the simulation run resulting from the execution of program of
Figure 9.32.

Figure 9.35 Simulation Run of Processor Instructions

 The testbench discussed above tests AddingCPU for all its in-
structions. This example shows the power and flexibility of VHDL file
handling for testbenches. In modeling larger memories, direct file

Core Design Test and Testability 371

read and write becomes inefficient and more elaborate memory and
related file handling schemes should be used.

9.5 Issues Related to Manufacturing Test
The rest of this chapter is devoted to design for testability in VHDL.
We discuss VHDL models for a configurable LFSR and a MISR that
are used in many testability techniques. We will then show a typical
scan design and a memory BIST. Testbenches and test application
platforms for testable designs that are presented are also discussed.
 Before we discuss the VHDL codes of testability components,
testable designs, and their corresponding test activation programs, it
is necessary to understand why designs are made testable. We will
discuss manufacturing test, fault models, and introduce some of the
very common test terminologies.

9.5.1 Manufacturing Test
As opposed to the design test that tests a design before it is built, post
manufacturing test tests a design after it is built. Post manufacturing
test of a circuit under test (CUT) is done by an external test equip-
ment testing our CUT, another circuit testing our CUT, or our CUT
testing itself.
 Post manufacturing test may require additional testability
hardware in the original CUT. When this is done, we say that our
design has been made Testable. Testing a testable design still re-
quires test data and testability method to be evaluated before the de-
sign is built. Testability of a design is evaluated by application of test
data through a testbench, or test platform, to the HDL model of the
design.
 Post manufacturing test efficiency is measured by test time and
manufacturing fault coverage. We will discuss this coverage after we
discuss fault models in the next section.

9.5.2 Fault Model
Many kinds of faults can occur after manufacturing a circuit. The
transistor structure of a logic gate can have various forms of transis-
tor terminal shorts, opens, as well as various transistor channel
faults. Instead having to deal with many such circuit faults, a simple
gate level fault model that represents many of these faults is used in
digital system testing.
 This fault model, that is used almost universally, is line stuck at
fault. This means that all internal and external faults of a gate are

372 Chapter 9

modeled by stuck-at-0 and stuck-at-1 faults on ports of the gate. This
means that there are maximum of six faults associated with a two-
input logic gate.
 Digital system test methodologies, test evaluation and design for
test techniques all use the stuck-at fault model.

9.5.3 Test Generation
A test generation program finds input test vectors for activating indi-
vidual faults and propagating their effects to the circuit output. Usu-
ally faults are treated one at time, and test vectors are found for each
fault acting independently. Treating faults this way is referred to as
single stuck-at fault model.

9.5.4 Fault Simulation
Fault simulation is when a circuit is simulated with the presence of a
fault. Fault simulation can verify if a certain test, when applied to a
faulty circuit, can make the output of the circuit to be different than
the good circuit output. When this happens we say that the fault is
detected.
 Fault simulation is done by first injecting fault f into the good
circuit model (referred to as golden model). A circuit faulted as such is
referred to as the faulty model of fault f. A testbench using this faulty
model applies a given set of test vectors to the primary inputs of the
faulty circuit and waits for its output to show a different behavior
than that of the good circuit.

9.5.5 Fault Coverage
 A testbench or a set of test vectors (test) is evaluated by its fault cov-
erage. A fault simulator is the primary tool for fault coverage evalua-
tion.
 For a given test, fault coverage is the ratio of faults detected by
the test set to the total number of circuit faults. Generally fault cov-
erage of test vectors that are specially generated for the given circuit
faults (deterministic tests) are higher than randomly generated tests.
However, random tests are easier and cheaper to generate. A test set
with high coverage is also referred to as an efficient test set.

9.5.6 Testability
In order to detect a fault, a test vector at the primary input of the
CUT has to propagate to the site of fault and activate it, and then it
has to propagate the fault effect to the primary output of the circuit.

Core Design Test and Testability 373

This means that a fault must be controllable and observable. Good
controllability and observability in large combinational circuits and in
sequential circuits are difficult to get. In order to improve these pa-
rameters, additional hardware is added to a circuit to reach test data
to hard-to-get places, and take outputs from circuit nodes that are
hard to propagate to the primary outputs. The added hardware im-
proves controllability and observability of the circuit and makes it
more testable.

9.6 Core Test Support Modules
Core testing involves generation of test, application of test to cores,
and collection of test responses. Input test vectors and output re-
sponse of a circuit can be stored external to the CUT or can be gener-
ated by the CUT or other neighboring cores.
Because of large external space (memory and/or hard disk) require-
ments, often, some or all test vectors are generated by on-chip
pseudo-random generators, and expected output responses are ana-
lyzed by on-chip signature generators.
 This section presents design of a configurable, linear feedback
shift-register (LFSR), and a configurable multi-input signature regis-
ter (MISR). An LFSR is used for pseudo-random input test vector
generation, while a MISR is used for output response analysis.
An LFSR is a shift register with feedback and exclusive-or gates in its
feedback or shift path. The initial content of the register is referred to
as seed, and the position of XOR gates is determined by the polyno-
mial (poly) of the LFSR. A MISR (Multiple Input Signature Register)
is like an LFSR, with input and output parallel data.

9.6.1 LFSR
Figure 9.36 shows an LFSR made of D-type flip-flops and XOR gates
in its shift path. The position of XOR gates determine the poly of this
circuit, which is poly=10101. The seed, which is the initial value of the
register, affects set and reset inputs of the individual flip-flops of the
shift register. The LFSR seed and poly determine bit values that are
generated on the serial output of the circuit (sout), as serial input bits
(sin) are being shifted in.

374 Chapter 9

Figure 9.36 An LFSR with 10101 Polynomial

 Figure 9.37 shows the LFSR VHDL code. This code describes the
structure of LFSR using XOR gates and positive edge D-type flip-flop
(not shown here) with asynchronous set and reset inputs. As with
most designs in this and the previous chapter, this circuit uses un-
constrained array declarations. The lfsr module wires n flip-flops, n-2
XOR gates in between flip-flops, and set and reset inputs of the flip-
flops according to the seed parameter of this module. When init be-
comes ‘1’, the LFSR seed is asynchronously loaded into the register.
 We have used generate statements for wiring the flip-flops of
this LFSR. The generate statement shown is based on the size of the
seed generic parameter. The nested generate statements shown, gen-
erate im_d vector for the inputs of the flip-flops, and then instantiate
dff flip-flops with bits of this vector.
 As shown in Figure 9.36, the left most flip-flop input is different
from the reset. For this, the first if-generate statement in Figure 9.37
generates the input of this flip-flop. The rest of the LFSR flip-flop in-
puts are generated using the rest generate statement. In each itera-
tion of the outer generate statement of Figure 9.37 (dffs labeled
statement), a dff is instantiated with bits of im_set, im_rst, imd, and
im_6 intermediate vectors.

Core Design Test and Testability 375

ENTITY lfsr IS
 GENERIC (poly, seed : std_logic_vector);
 PORT (clk, init, sin : IN std_logic;
 sout : OUT std_logic);
END ENTITY ;
--
ARCHITECTURE procedural OF lfsr IS
 COMPONENT dff IS
 PORT (clk, set, rst, d : IN std_logic;
 q : OUT std_logic);
 END COMPONENT ;
 FOR ALL : dff USE ENTITY WORK.dff(procedural);
 SIGNAL im_set, im_rst, im_d, im_q
 : std_logic_vector (seed'RANGE);
BEGIN
 dffs: FOR i IN seed'RANGE GENERATE
 first: IF (i=seed'LEFT) GENERATE
 im_d(i) <= sin XOR im_q (seed'RIGHT);
 END GENERATE;
 rest: IF (i/=seed'LEFT) GENERATE
 im_d(i) <= im_q (i+1) XOR
 (poly (i) AND im_q (seed'RIGHT));
 END GENERATE;
 im_set(i) <= init AND seed(i);
 im_rst(i) <= init AND NOT seed(i);
 dffi: dff PORT MAP
 (clk, im_set(i), im_rst(i), im_d(i), im_q(i));
 END GENERATE;
 sout <= im_q (seed'RIGHT);
END ARCHITECTURE;

Figure 9.37 Structural LFSR VHDL Code

9.6.2 MISR
A multiple input signature register (MISR) is used for signature gen-
eration and data compression. Over a period of several clocks, parallel
data of a MISR are compressed with the existing MISR data. The fi-
nal data depends on the MISR initial data (seed) and its XOR and
feedback structure (poly).
 Figure 9.38 shows a MISR with a configurable polynomial (poly).
The circuit has a reset input that initializes it to 0000. This initial
value is considered as the seed of this MISR example.
 The VHDL code of Figure 9.39 corresponds to the hardware of
Figure 9.38. The process block in this code handles resetting and sig-
nature generation. The generation of the signature is based on the
input poly that configures the feedback (shift_reg(i)) connections to
the XOR gates that are between the flip-flops.

376 Chapter 9

Figure 9.38 MISR Circuit

The process statement in the VHDL code of Figure 9.39 uses a
for-loop to construct flip-flop inputs of the MISR. As shown, bit i of
the shift-register input (shift_reg(i)) is set to a Boolean expression
that involves the right-most shift-register bit, the corresponding poly
bit (poly(i)), the shift register bit to its left (shift_reg(i+1)), and bit i of
the d_in parallel input. Polynomial bit (poly(i)) is ANDed with the
right-most bit to select or unselect the feedback path into the ith flip-
flop input. The shift_reg vector formed by the process statement
shown in the VHDL code is clocked into this register. The register
output is assigned to d_out MISR output outside of the process.

ENTITY misr IS
 GENERIC (poly : std_logic_vector);
 PORT (clk, rst : IN std_logic;
 d_in : IN std_logic_vector;
 d_out : OUT std_logic_vector);
END ENTITY;
--
ARCHITECTURE procedural OF misr IS
 SIGNAL shift_reg :
 std_logic_vector (d_in'LENGTH DOWNTO 0);
BEGIN
 PROCESS (clk) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF rst='1' THEN
 shift_reg <= (OTHERS => '0');
 ELSE
 FOR i IN d_out'RANGE LOOP
 shift_reg (i) <=
 (shift_reg(shift_reg'RIGHT) AND poly(i))
 XOR shift_reg (i+1) XOR d_in (i);
 END LOOP;
 END IF;
 END IF;
 END PROCESS;
 d_out <= shift_reg (d_in'LENGTH-1 DOWNTO 0);
END ARCHITECTURE procedural;

Figure 9.39 MISR VHDL Description

Core Design Test and Testability 377

 The unconstrained design of MISR discussed above adjusts itself
to the size of its input vector when instantiated. It is the responsibil-
ity of the instantiating architecture to check for conformity of the
sizes of input, poly, and output vectors. A more robust model would
use assertion statements to issue warning messages in case of non
conformity.

9.7 Scan Design and Test Application
A testability technique that is often used in cores is the scan design.
In principle, a scan design consists of a shift-register that brings in
serial data from accessible circuit pins into inaccessible internal lines
of a circuit under test. A scan register provides controllability and
observability. This section uses a typical sequential circuit as the cir-
cuit to be tested. We show how a circuit is made testable by adding a
scan register to its inputs, states, and outputs. We will then develop a
testbench for this testable design. the testbench applies data to the
testable circuit and collects the circuit responses through the scan
register.

9.7.1 Starting Design
The starting design to be made testable is a Moore machine with six
states, two inputs (x1 and x0), and two outputs. The x0 input resets
the machine, and x1 is the data input. While x0 is 0, if a “110” se-
quence appears or x1, then output bit becomes 1, and if “101” is de-
tected, output bit 1 becomes 1.
 We have used the Huffman style of coding for describing this cir-
cuit. Instead of using an enumeration type for the states, six combi-
nations of a 3-bit std_logic_vector represent present and next states of
the machine. This is done so that state flip-flops are available to be-
come part of a scan register. Partial code of this state machine is
shown in Figure 9.40. State names and the combinational process are
included in this VHDL code.

The rectangular box shown in the VHDL code of Figure 9.40
marks the section of the code that will be affected by the insertion of a
scan register. Parts of this extra code are in the declarative part of
the procedural architecture, and others are in the statement part.

378 Chapter 9

ARCHITECTURE procedural OF moore4 IS
 CONSTANT reset : std_logic_vector(2 downto 0) := "000";
 CONSTANT got1 : std_logic_vector(2 downto 0) := "001";
 CONSTANT got10 : std_logic_vector(2 downto 0) := "010";
 CONSTANT got11 : std_logic_vector(2 downto 0) := "011";
 CONSTANT got101 : std_logic_vector(2 downto 0) := "100";
 CONSTANT got110 : std_logic_vector(2 downto 0) := "101";
 SIGNAL p_state, n_state : std_logic_vector(2 downto 0);
 . . . Scan Code . . .
BEGIN
 . . . Scan Code . . .
 PROCESS (p_state, x1, x0) -- x1=x , x0=rst
 BEGIN
 n_state <= reset;
 outputs <= "00";
 IF x0 ='1' THEN n_state <= reset;
 ELSE
 CASE p_state IS
 WHEN reset =>
 IF x1 = '1' THEN n_state <= got1;
 ELSE n_state <= reset; END IF;
 outputs <= "00";
 WHEN got1 =>
 IF x1 = '0' THEN n_state <= got10;
 ELSE n_state <= got11; END IF;
 outputs <= "00";
 WHEN got10 =>
 IF x1 = '1' THEN n_state <= got101;
 ELSE n_state <= reset; END IF;
 outputs <= "00";
 WHEN got11 =>
 IF x1 = '1' THEN n_state <= got11;
 ELSE n_state <= got110; END IF;
 outputs <= "00";
 WHEN got101 =>
 IF x1 = '1' THEN n_state <= got11;
 ELSE n_state <= got10; END IF;
 outputs <= "10";
 WHEN got110 =>
 IF x1 = '1' THEN n_state <= got101;
 ELSE n_state <= reset; END IF;
 outputs <= "01";
 WHEN OTHERS =>
 n_state <= reset;
 outputs <= "00";
 END CASE;
 END IF;
 END PROCESS;
END ARCHITECTURE;

Figure 9.40 Testability Circuit

Core Design Test and Testability 379

9.7.2 Scan Insertion
Scan insertion in our sequence detector circuit is done according to
the diagram of Figure 9.41. The gray parts of this diagram are the
original circuit, and the other parts are the inserted scan hardware.
On the input side, the scan has a scan register and a multiplexer that
selects between the primary inputs and the scanned input data.

Figure 9.41 Scan Insertion in a Typical Sequential Circuit

On the output side, the scan register is setup to capture output and
shift it out on its so (scan out) output. The state register is setup so
that it either works in the parallel normal mode, or it shifts its serial
input into the register. The VHDL code added to the code of Figure
9.40 for the implementation of the scan design of Figure 9.41 is
shown in Figure 9.42. The code shown in this figure takes the place of
the boxed area in Figure 9.40.

380 Chapter 9

. . .
SIGNAL in_scan_reg, out_scan_reg
 : std_logic_vector(1 downto 0);

COMPONENT scan_reg IS
 PORT (si, clk, rst, cen, m : IN std_logic;
 so : OUT std_logic;
 parin : IN std_logic_vector;
 parout : OUT std_logic_vector);
 END COMPONENT;
 FOR ALL: scan_reg USE ENTITY WORK.scan_reg(procedural);
BEGIN
 InScanReg : scan_reg PORT MAP
 (si, clk, rst, in_reg_cen,
 m, in_reg_so, in_scan_reg,
 in_scan_reg);
 StateScanReg : scan_reg PORT MAP
 (in_reg_so, clk, rst, '1', m,
 st_reg_so, n_state, p_state);
 OutScanReg : scan_reg PORT MAP
 (st_reg_so, clk, rst, '1', m,
 so, outputs, out_scan_reg);

 --MUX for selecting appropriate input data in either mode
 (x1, x0) <= in_scan_reg WHEN scan='1' ELSE inputs;
. . .

Figure 9.42 Scan Registers Inserted in Moore Machine Code

9.7.3 Scan Testbench
The scan testbench module shifts data into the serial input of our
testable circuit and collects data from its serial output.
 The testbench reads a line of input and output consisting of 10
bits. The first five bits are for the inputs of the CUT. Two of these bits
are for the primary inputs of the CUT and the other three are for the
present state of the machine. The second five bits of a data line read
by the testbench constitutes the response of the circuit. Two of these
five bits are the primary outputs, and the other three are collected
from the state register.
 The testbench reads a line, takes the input part, serializes it,
shifts it into the circuit, clocks the circuit, shifts data out, and when
all bits are collected, they are compared with the expected response of
the circuit. As response bits are being shifted out, a new input is read
and is shifted into the circuit. Because of this, when a line is read, its
output part is saved as expected_result to be checked with the gener-
ated result when it is shifted out. The complete VHDL code of this
testbench is shown in Figure 9.43.

Core Design Test and Testability 381

ENTITY scan_tester IS
 PORT (clk, Nbar_T : IN std_logic;
 si : OUT std_logic; so : IN std_logic;
 m : OUT std_logic;
 in_reg_cen : OUT std_logic;
 scan, error : OUT std_logic;
 error : OUT std_logic);
END ENTITY;
--
ARCHITECTURE file_oriented OF scan_tester IS
 FILE test_file : TEXT OPEN READ_MODE IS "TestData.dat";
 SIGNAL exp_res_sig : std_logic_vector (4 DOWNTO 0);
 SIGNAL gen_res_sig : std_logic_vector (4 DOWNTO 0);
BEGIN
 Read_File : PROCESS
 VARIABLE l1 : LINE;
 VARIABLE test_in : std_logic_vector (4 DOWNTO 0);
 VARIABLE test_out : std_logic_vector (4 DOWNTO 0);
 VARIABLE generated_res:std_logic_vector (4 DOWNTO 0);
 VARIABLE expected_result:std_logic_vector(4 DOWNTO 0);
 BEGIN
 error <= '0';
 scan <= '0';
 WAIT UNTIL Nbar_T = '1';
 scan <= '1';
 test_out := "00000";--expected result for first test

 WHILE NOT ENDFILE(test_file) LOOP
 error <= '0';
 expected_result := test_out;
 exp_res_sig <= test_out;--just for debugging
 READLINE (test_file, l1);
 READ (l1, test_in);
 READ (l1, test_out);
 FOR i IN 4 DOWNTO 0 LOOP -- shift in input data
 WAIT UNTIL clk='1' AND clk'EVENT;--shift on pos
 m <= '1';
 in_reg_cen <= '1';
 si <= test_in(i);
 --collect on neg edge
 WAIT UNTIL clk='0' AND clk'EVENT;
 generated_res(i) := so;
 gen_res_sig(i) <= so; --just for debugging
 END LOOP;

 IF generated_res /= expected_result THEN
 error <= '1';
 END IF;

 WAIT UNTIL clk='1' AND clk'EVENT; --capture res
 m <= '0';
 in_reg_cen <= '0';
 END LOOP; -- Continued

382 Chapter 9

 WAIT UNTIL Nbar_T='0'; --normal operation
 scan <= '0';
 WAIT;
 END PROCESS;
END ARCHITECTURE file_oriented;

Figure 9.43 Testbench for Scan Testable Circuit

 The testbench shown, uses TEXTIO procedures to read line of an
input file. A while loop in this description reads a line of stimuli and
responses until the end of file is reached. While application of data
and capturing and shifting the response continues, if the generated
and expected results do not match, an error will be issued. Other de-
tails of the mechanism of this test strategy can be found from its
VHDL code.

9.7.4 Top Level Tester
At the top-level, the procedural architecture of the tester instantiates
the testable CUT (Figure 9.40 and Figure 9.42) and its testbench
(Figure 9.43), and operates the circuit in its test mode and its normal
mode of operation. Figure 9.44 shows the VHDL code of the top-level
tester of our example.

ENTITY sc_m4 IS END ENTITY ;
--
ARCHITECTURE procedural OF sc_m4 IS
 SIGNAL scan, m, si, so, in_reg_cen : std_logic;
 SIGNAL rst, x, error, clk, Nbar_T : std_logic := '0';
 SIGNAL inputs, outputs : std_logic_vector(1 downto 0);

BEGIN
 Moore4 : ENTITY WORK.moore4(procedural)
 PORT MAP (rst, clk, scan, m, inputs,
 outputs, si, so, in_reg_cen);
 Scan_Tester : ENTITY WORK.scan_tester(file_oriented)
 PORT MAP (clk, Nbar_T, si, so, m,
 in_reg_cen, scan, error);
 Nbar_T <= '1' AFTER 30 NS, '0' AFTER 600 NS;
 rst <= '1' AFTER 4 NS , '0' AFTER 18 NS;
 x <='1' AFTER 619 NS,'0' AFTER 633 NS,'1' AFTER 647 NS,
 '0' AFTER 675 NS,'1' AFTER 690 NS, '0' AFTER 758 NS;
 clk <= NOT clk AFTER 7 NS WHEN NOW <= 800 NS ELSE '0';

 inputs <= x&rst;

END ARCHITECTURE;

Figure 9.44 Top-level Tester

Core Design Test and Testability 383

9.8 Memory BIST
Another testability method is to make a design self-testable. This
way, input test data generation and output response analysis are all
done inside the circuit. This test methodology is called Built-In Self
Test or BIST. This section examines a memory BIST. The memory to
be tested is the unconstrained memory model discussed in Chapter 6
that was also used in Chapter 8 for design of a stack.

9.8.1 Memory BIST Architecture
Figure 9.45 shows the memory BIST architecture. The memory to be
tested in shown in gray and solid line blocks show the test circuitry.
Test data that is to be applied is generated by this BIST circuitry and
applied to the memory. As data is being read from the memory, it is
compared with the reproduction of the same data that was written
into specific memory locations. After writing and reading all loca-
tions, we expect all data read from the memory to be the same as
those that were written into it.

Figure 9.45 Memory BIST Architecture

384 Chapter 9

9.8.1.1 Counter. InputData, address and switching between reading
and writing the memory are provided by a counter. The least signifi-
cant bits of the counter provide addressing for all locations of the
memory. The counter bit to the left of the address group of bits tog-
gles between write and read operations. The three most significant
bits of the counter are decoded to generate eight test vectors for test-
ing memory words.

Figure 9.46 shows the VHDL code of this counter. The counter
carry-out (cout) becomes ‘1’ when the count reaches its maximum.

ENTITY counter IS
 PORT (d_in : IN std_logic_vector;
 clk, ld, u_d, cen : IN std_logic;
 q : OUT std_logic_vector; cout : OUT std_logic);
END ENTITY ;
--
ARCHITECTURE procedural OF counter IS
 SIGNAL cnt_reg :
 std_logic_vector(q'LENGTH DOWNTO 0) REGISTER;
BEGIN
 cl: BLOCK (clk = '1' AND NOT clk'STABLE) BEGIN
 en: BLOCK (cen = '1' AND GUARD) BEGIN
 cnt_reg <= GUARDED ('0'&d_in) WHEN ld='1'
 ELSE cnt_reg + 1 WHEN u_d = '1'
 ELSE cnt_reg - 1;
 END BLOCK;
 END BLOCK;
 q <= cnt_reg(q'RANGE);
 cout <= cnt_reg(q'LEFT);
END ARCHITECTURE;

Figure 9.46 Memory BIST Counter

9.8.1.2 Decoder. The test data decoder uses a 3-bit input vector to
lookup memory test patterns shown in Figure 9.47. The VHDL code of
the decoder is shown in Figure 9.48.

Figure 9.47 Decoder: Test Pattern Generation

Test Pattern Input Decoder Output
0 000 00000000
1 001 00001111
2 010 00110011
3 011 01010101
4 100 11111111
5 101 11110000
6 110 11001100
7 111 10101010

Core Design Test and Testability 385

ENTITY decoder IS
 PORT (input : IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 output : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));
END ENTITY ;
--
ARCHITECTURE procedural OF decoder IS
 TYPE std_logic_2d IS
 ARRAY (3 DOWNTO 0) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
 CONSTANT table : std_logic_2d :=(
 "01010101",
 "00110011",
 "00001111",
 "00000000");
 SIGNAL out_temp : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN
 out_temp <= table(conv_integer(input(1 DOWNTO 0)));
 output <= out_temp WHEN input(2) = '0' ELSE
 NOT out_temp;
END ARCHITECTURE;

Figure 9.48 Memory BIST Pattern Generator Decoder

9.8.1.3 Multiplexers. The multiplexers of the BIST architecture of
Figure 9.45 select between normal memory inputs and BIST provided
inputs. When Nbar_T is ‘1’, the memory in working in the normal
mode and when this input becomes ‘0’ it operates in test mode.

9.8.1.4 Comparator. Initially, the same test pattern is written into
all memory locations, and then this data is read out from all loca-
tions. As data are being written and read the decoder input, and thus
test patterns, remain unchanged. A comparator checks memory data
with decoder output. When memory is being tested and data is being
read, the comparator should have same data on both its inputs.

9.8.2 Test Session
A test session begins when the counter is all 0s, and ends when the
counter reaches all 1s. Starting with all 0s, test pattern 0 is written
in location 0. As the counter is incremented, this same pattern is
written into all memory locations. When all memory locations are
written into, the counter increments, causing the least significant
part of it (address bits) to roll over to all 0s, and the RWbar bit to be-
come 1. When this happens, the same data will now be read from all
memory locations. When this is done, the RWbar bit becomes 1, ad-
dress starts back at 0, and the next test pattern starts being written
into all locations. This process continues for all eight test patterns.

386 Chapter 9

When done, all test patterns have been written into and read from all
memory locations. While this is happening, the comparator checks for
a mismatch and issues an error if it finds one.

9.8.3 BIST Controller
The BIST controller shown in Figure 9.49 starts the counter when it
receives the start signal and waits for the carry-out (cout) of the
counter.

ENTITY BIST_controller IS
 PORT (start, rst, clk, cout : IN std_logic;
 Nbar_T, ld : OUT std_logic);
END ENTITY ;
--
ARCHITECTURE procedural OF BIST_controller IS
 TYPE state IS (reset, test);
 SIGNAL current : state := reset;
BEGIN
 PROCESS (clk) BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 IF rst = '1' THEN
 current <= reset;
 ELSE
 CASE current IS
 WHEN reset =>
 IF start = '1' THEN current <= test;
 ELSE current <= reset; END IF;
 WHEN test =>
 IF cout = '1' THEN current <= reset;
 ELSE current <= test; END IF;
 WHEN OTHERS => current <= reset;
 END CASE;
 END IF;
 END IF;
 END PROCESS;
 Nbar_T <= '1' WHEN current = test ELSE '0';
 ld <= '1' WHEN current = reset ELSE '0';
END ARCHITECTURE;

Figure 9.49 BIST Controller

9.8.4 BIST Structure
The VHDL code of Figure 9.50 shows the complete BIST structure
including the RAM that is being tested. Components instantiated in
this description are according to the diagram of Figure 9.45. In addi-

Core Design Test and Testability 387

tion to the components instantiated, this code has a process state-
ment that issues the fail flag if the comparator finds a mismatch.

ENTITY BIST IS

 PORT (start, rst, clk, csin, rwbarin : IN std_logic;
 opr : IN BOOLEAN;
 address : IN std_logic_vector;
 datain : IN std_logic_vector;
 dataout : OUT std_logic_vector;
 fail : OUT std_logic);

END ENTITY ;
--
ARCHITECTURE structural OF BIST IS

 SIGNAL zero : std_logic_vector (9 DOWNTO 0)
 := (OTHERS => '0');
 SIGNAL cout, ld, Nbar_T, cs : std_logic;
 SIGNAL rwbar, gt, eq, lt : std_logic;
 SIGNAL q : std_logic_vector (9 DOWNTO 0);
 SIGNAL data_t : std_logic_vector (7 DOWNTO 0);
 SIGNAL ramin, ramout : std_logic_vector (7 DOWNTO 0);
 SIGNAL ramaddr : std_logic_vector (5 DOWNTO 0);

BEGIN

 CNTRL : ENTITY WORK.BIST_controller(procedural)
 PORT MAP (start, rst, clk, cout, Nbar_T, ld);

 CNT : ENTITY WORK.counter(procedural)
 PORT MAP (zero, clk, ld, '1', '1', q, cout);
 DEC : ENTITY WORK.decoder(procedural)
 PORT MAP (q(9 DOWNTO 7), data_t);
 MUX_D : ENTITY WORK.multiplexer(procedural)
 PORT MAP (datain, data_t, Nbar_T, ramin);
 MUX_A : ENTITY WORK.multiplexer(procedural)
 PORT MAP (address, q(5 DOWNTO 0),
 Nbar_T, ramaddr);
 rwbar <= rwbarin WHEN Nbar_T = '0' ELSE q(6);

 cs <= csin WHEN Nbar_T = '0' ELSE '1';

 RAM : ENTITY WORK.std_logic_ram (behavioral)
 PORT MAP (ramaddr, ramin, ramout,
 cs, rwbar, opr);

 CMP: ENTITY WORK.compartor (expression)
 PORT MAP (data_t, ramout, gt, eq, lt);

 -- Continued

388 Chapter 9

 PROCESS(clk)
 BEGIN
 IF (clk = '1' AND clk'EVENT) THEN

 IF (Nbar_T = '1') AND (rwbar = '1') AND (opr)
 THEN
 IF eq = '0'
 THEN
 fail <= '1';
 END IF;
 ELSE
 fail <= '0';
 END IF;

 END IF;
 END PROCESS;

 dataout <= ramout;
END ARCHITECTURE;

Figure 9.50 Memeory BIST Structure

9.8.5 BIST Tester
The memory and its BIST are tested in the timed architecture of the
BIST_Tester testbench. This testbench is shown in Figure 9.51. The
testbench initially loads external file data into the memory at time 5
ns when operate becomes TRUE. Then at some arbitrary times data is
written into and read from the memory. The BIST test session begins
when start becomes 1 at time 50 ns. Testing continues until all RAM
locations have been tested. While the memory is being tested, exter-
nal read and write operations are ignored.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;

ENTITY BIST_tester IS END ENTITY BIST_tester;

ARCHITECTURE timed OF BIST_tester IS
 SIGNAL ramin, ramout : std_logic_vector (7 DOWNTO 0);
 SIGNAL addr : std_logic_vector (5 DOWNTO 0);
 SIGNAL cs, rwbar, start : std_logic := '0';
 SIGNAL rst, fail, clk : std_logic := '0';
 SIGNAL operate : BOOLEAN;
BEGIN

-- Continued

Core Design Test and Testability 389

 UU1: ENTITY WORK.BIST (structural)
 PORT MAP (start, rst, clk, cs, rwbar, operate,
 addr, ramin, ramout, fail);
 clk <= NOT clk AFTER 5 NS WHEN NOW <= 800 NS ;
 operate <= TRUE AFTER 5 NS, FALSE AFTER 800 NS;
 cs <= '0', '1' AFTER 15 NS, '0' AFTER 337 NS;
 rwbar <= '1', '1' AFTER 190 NS;
 addr <= "101100" AFTER 020 NS,"101110" AFTER 040 NS…

 ramin<="11110001" AFTER 010 NS,"00101100" AFTER 030 NS…

 rst <= '0';
 start <= '0', '1' AFTER 50 NS;

END ARCHITECTURE timed;

Figure 9.51 Memory and BIST Testbench

9.9 Summary
This chapter discussed various test issues in VHDL. We started with
testbench techniques and discussed several complete testbench ex-
amples that utilized our techniques. This part was followed by model-
ing test applications and testability hardwares in VHDL. In this part
we discussed a typical scan design and a memory BIST. The memory
BIST example in this chapter showed the role of a testbench in verify-
ing performance of a BIST that itself is for testing a different module.
In the examples of this chapter we used the standard std_logic_1164
package, and took advantage of TEXTIO procedures whenever possi-
ble. The examples were made general and in many cases uncon-
strained so that they can easily be adapted to other designs.

Problems
9.1 Insert delays in the Boolean expressions of the array multiplier
of Section 8.3.1 and recompile your design. Generate a testbench for
this new array multiplier. Wait for the worst-case delay of your cir-
cuit before reading the outputs from the multiplier outputs. The test-
bench should check the expected result with the result coming from
the multiplier.

9.2 Write an interactive testbench for the Booth multiplier of Sec-
tion 8.3.3. Instantiate the multiplier, read external data from exter-
nal files, apply data to the multiplier, and check the results with your
expected results.

390 Chapter 9

9.3 In test applications it becomes necessary to inject a fault into a
circuit line. The fault overrides the normal value of the line and sets
it to ‘1’ or ‘0’ depending on stuck-at-1 or stuck-at-0 faults that are be-
ing injected. We are to develop utilities to enable us to inject faults
into lines of std_logic type. For this purpose, every circuit line be-
comes a record with a normal std_logic logic value and a field that
specifies the fault if there is one. This filed takes sa1, sa0 and nofault
values for stuck-at-1, stuck-at-0 and none faulty values. This value
decides if a line takes its normal value or a faluty ‘1’ or ‘0’. A) Show
std_ulogic_faultabe type of record as described above. B) Show utili-
ties for generating a resolution function to resolve between multiple
drivers for lines of type std_ulogic_faultabe C) Write a resolution
function that generates a normal std_logic value if no fault is injected
on a line, or it generates ‘1’ or ‘0’ if a fault is injected on one of the
drivers of a line. For this you can use the resolution_table and/or the
resolved function of the std_logic_1164 package.

9.4 Fault simulation is the process of injecting faults into circuit
lines and simulating to observe propagation of faulty values. Fault
simulation requires a method of injecting faults into circuit lines. At
the gate level, fault injection can be done by forcing faulty values on
circuit outputs. For this to happen, a gate can be given a generic pa-
rameter for each of its outputs called fault that can take either of
three values sa0 (Stuck at 0), sa1 (Stuck at 1) or none. When this ge-
neric indicates a faulty value, that value must be placed on circuit
outputs, otherwise the gate will produce its normal logic value that is
based on its inputs. A) Declare all types necessary for this simple
fault injection procedure. B) Write complete faultable description of a
two input NAND gate. C) Show instantiation of this gate for insert-
ing a sa0 fault on its output.

9.5 Modify the memory BIST of Section 9.8 to replace its compara-
tor with a MISR. The MISR connects to the output of the memory.
The MISR signature is presumed to be pre-calculated during simula-
tion. With each read from the memory, the MISR is updated. After a
complete test session, compare the expected signature with the signa-
ture in MISR and report an error is a discrepancy is found.

9.6 Modify the scan design of Section 9.7 in such a way that an
LFSR generates the input serial data and a SISR (Serial Input Signa-
ture Register) collects the output serial data. An SISR is a MISR with
only a serial input. Turn this design into a BIST so that the BIST
controller starts the serial data generation and when a test session
ends, it compares the signature in SISR with a pre-calculated signa-

Core Design Test and Testability 391

ture. Your BIST controller has a fixed number of clocks for a test ses-
sion. When the count reaches the pre-determined number of clocks,
the controller compares the signature with the expected (determined
by simulation) signature.

9.7 The following partial code is the sequential block of a controller
coded in Huffman style of coding. Modify this code to add to it a
Shadow register. This requires a 10-bit register and control signals
for shifting serial data, applying test data to the circuit and reading
circuit response into the Shadow register. The test hardware also
requires a serial-in and a serial-out for serial data being shifted in
and serial data being shifted out (Sin and Sout). The test circuitry
(those associated with the Shadow register) uses the main circuit
clock, but has a test-enable input, Ten, that enables clocking of the
shadow register. In the normal mode of operation, if Ten is active,
data from Sin will be shifted in and data of the Shadow register will
be shifted out on Sout. To apply the contents of the Shadow register
to the combinational part of the Circuit-Under-Test (P_state),
TestApplyAndCapture must become ‘1’. While TestApplyAndCapture
is ‘1’, the next clock edge will load the data output from the combina-
tional part of the hardware (N_state) into the Shadow register. After
this, TestApplyAndCapture can become ‘1’ and data captured in the
Shadow register can start being shifted out. While this is being done,
the circuit operates in its normal mode of operation. Show hardware
description corresponding to the Shadow register and its application
to the CUT.

SIGNAL N_state : std_logic_vector (9 DOWNTO 0);
SIGNAL P_state : std_logic_vector (9 DOWNTO 0);
. . .

PROCESS (clk, rst) BEGIN

 IF (rst = '1' AND rst'EVENT) THEN
 P_state <= “000000000”;

 ELSIF (clk = '1' AND clk'EVENT) THEN
 P_state <= N_state;
 END IF;

END PROCESS;

9.8 Given the following VHDL code of a 1011 detector, modify it so
that the control flip-flops can become chained in a scan register when
the circuit is in the test mode. The test mode is entered when TMode
becomes ‘1’. In this case, data on TDin will be shifted into the regis-
ter (flip-flops of the controller) with each Clk (Clk is the normal clock

392 Chapter 9

of the circuit) and existing data in the register will be clocked out onto
TDout signal. Shifting data on TDin into the register happens simul-
taneous with data being shifted out on TDout. Shifted data becomes
the present_state of the circuit. To clock the next_state, TMode must
become ‘0’ and clock applied. When TMode is ‘0’, the circuit works in
normal mode.

ENTITY asynch_reset_detector IS
 PORT (x, r, clk : IN std_logic; z : OUT std_logic);
END;

ARCHITECTURE behavioral OF asynch_reset_detector IS
 TYPE state IS std_logic_vector (2 DOWNTO 0);
 SIGNAL next_state, present_state : state;
 CONSTANT a : state := “000”;
 CONSTANT b : state := “001”;
 CONSTANT c : state := “010”;
 CONSTANT d : state := “011”;
 CONSTANT e : state := “100”;
BEGIN

 reg : PROCESS (clk, r) BEGIN
 IF r = '1' THEN present_state <= a;
 ELSIF (clk'EVENT AND clk = '1') THEN
 present_state <= next_state;
 END IF;
 END PROCESS;

 logic : PROCESS (present_state, x)
 BEGIN
 CASE present_state IS
 WHEN a =>
 IF x = '0' THEN next_state <= a;
 ELSE next_state <= b; END IF;
 WHEN b =>
 IF x = '0' THEN next_state <= c;
 ELSE next_state <= b; END IF;
 WHEN c =>
 IF x = '0' THEN next_state <= a;
 ELSE next_state <= d; END IF;
 WHEN d =>
 IF x = '0' THEN next_state <= c;
 ELSE next_state <= e; END IF;
 WHEN e =>
 IF x = '0' THEN next_state <= c;
 ELSE next_state <= b; END IF;
 END CASE;
END PROCESS;

 z <= ‘1’ WHEN present_state = e;

END behavioral;

Core Design Test and Testability 393

9.9 The Entity declaration of our CUT (Circuit Under Test) is given.
Write a test bench to read test data from file CUT_test.inp, apply
them to the CUT, read output data from the CUT, and write output of
the CUT to CUT_test.out. Note that applying data and reading data
must be concurrent. The format of the data input is shown below. A
line of input data begins with the time of data followed by an 8-bit
std_logic_vector, a 1-bit std_logic_vector, and a 9-bit string. The for-
mat of the output is shown below. A line of output begins with the
time of data followed by a 2-digit Hexadecimal data, a one-bit
std_logic_vector, and a 5-bit string. The 9-character input string is
applied to the CUT as it is read from the input file. The 5-character
output string is read from the CUT and is written into the output file
exactly as read from the CUT. Data read and applied to the CUT are
as read from or to the corresponding files; i.e., no recoding is needed.
Input times are the times at which the particular data is to be applied
to the CUT. Output times are times at which an output of the CUT
changes value.

ENTITY Circuit_Under_Test IS
PORT (inbus: IN std_logic_vector (7 DOWNTO 0);

inflag: IN std_logic;
instr: IN STRING (1 TO 9);
outbus: OUTstd_logic_vector (7 DOWNTO 0);
outflag: OUT std_logic;
status: OUT STRING (1 TO 5));

END Circuit_Under_Test;

Input Data:
0100 NS 110011ZZ 1 LDA R1 R0
0240 NS 10011111 0 JMP 000F5
0740 NS 10011111 1 STA 000F5

Output Data:
0109 NS F7 1 Load
0257 NS AA 0 Read
0731 NS 05 1 Write

Suggested Reading
Abramovici, Miron, Melvin A. Breuer, and Arthur D. Friedman, Digi-

tal System Testing and Testable Design, Computer Science Press,
1990, ISBN: 0-7167-8179-4.

394 Chapter 9

Accellera, Open Verification Library: Assertion Monitor Reference
Manual, www.accellera.org, v1.0, 2005.

Bening, Lionel and Harry D. Foster, Principles of Verifiable RTL De-
sign Second Edition - A Functional Coding Style Supporting Veri-
fication Processes in Verilog, Springer, 2nd edition, 2001, ISBN:
0792373685.

Bushnell, Michael L., and Vishwani D. Agrawal, Essential of Elec-
tronic Testing, for Digital Memory & Mixed-Signal VLSI Circuits,
Klwuer Academic Publishing, 2000, ISBN: 0-7923-7991-8.

Chu, Pong, RTL Hardware Design Using VHDL: Coding for Effi-
ciency, Portability, and Scalability, 2006, Wiley-IEEE Press,
ISBN: 0471720925.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference
Manual, SH94983-TBR (print) SS94983-TBR (electronic), ISBN 0-
7381-3247-0 (print) 0-7381-3248-9 (electronic), 2002.

Jha, Niraj, and Sandeep Gupta, Testing of Digital Systems, Cam-
bridge University Press, 2003, ISBN: 0-521-77356-3.

Lipsett, Roger, and Cary Ussery, VHDL Hardware Description and
Design, 1st edition, 2001, Springer, ISBN: 978-0792390305.

Miczo, Alexander, Digital Logic Testing and Simulation, 2nd Edition,
John Wiley & Sons, Inc., Publishing, 2003, ISBN: 0-471-43995-9.

Navabi, Zainalabedin, Verilog Digital System Design: Register Trans-
fer Level Synthesis, Testbench, and Verification, 2006, McGraw
Hill-Professional, ISBN: 0070144564-1.

Navabi, Zainalabedin, Embedded Core Design with FPGAs, 2006,
McGraw Hill-Professional, ISBN: 0071474811.

Perry, Douglas L., and Harry Foster, Applied Formal Verification for
Digital Circuit Design, 2005, McGraw-Hill Professional, ISBN:
978-0071443722.

www.accellera.org

395

10 Design, Test and Application
of a Processor Core

Processors play a major role in the design of embedded systems. An
embedded processor may be used as the central processing unit of an
embedded system, or it may just be used as a convenient and fast way
of implementing a hardware function. With embedded systems, un-
derstanding how a processor works, its software, and software utili-
ties, such as compilers and assemblers, are key topics that a hard-
ware designer should be familiar with.

This chapter provides the basic concepts and techniques that are
necessary for design and utilization of an embedded processor. The
necessary background materials for this chapter are RT level design
and test techniques presented in Chapters 8 and 9. This provides the
necessary background for understanding the hardware of a processor.
In the description of processor hardware we begin with a simple proc-
essor example that has the basic properties found in most processing
units and then continue with a more realistic processor. The hard-
ware and software of this processor, which we refer to as SAYEH, be-
comes the main focus of this chapter. In a top-down fashion, we will
show control-data partitioning of our example processors and design
and implementation of the individual parts of these machines. After
the completion of the processor design in VHDL, we will show how
this processor can be used as an embedded core for the design of an
FIR filter. This examples shows utilization of hardware processors.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

396 Chapter 10

10.1 Design of SAYEH Processor Core
This section shows design and description of a small processor in
VHDL. The CPU is SAYEH (Simple Architecture, Yet Enough Hard-
ware) that has been designed for educational and benchmarking pur-
poses. The design is simple, and follows the design strategy used for
the Adding CPU of Chapter 8.

This section heavily relies on the reader knowing the implemen-
tation details that we presented in Chapter 8. Unlike the Adding
CPU, SAYEH is a processor with a set of instructions and an archi-
tecture that can be used for real embedded processor applications.
However, the design, implementation, VHDL coding style, and test
strategy of SAYEH are very similar to those of the Adding CPU. Be-
cause of the size of the VHDL code of SAYEH, we will not show com-
plete codes of all components of SAYEH in this chapter. Instead, In
many cases we show code outlines similar to those of the Adding
CPU.

10.1.1 Details of Processor Functionality
The simple CPU example discussed here has a register file that is
used for data processing instructions. The CPU has a 16-bit data bus
and a 16-bit address bus. The processor has 8 and 16-bit instructions.
Short instructions contain shadow instructions, which effectively
pack two such instructions into a 16-bit word. Figure 10.1 shows
SAYEH interface signals.

Figure 10.1 SAYEH Interface

10.1.1.1 CPU Components. SAYEH uses its register file for most of
its data instructions. Addressing modes of this processor also take
advantage of this structure. Because of this, the addressing hardware
of SAYEH is simple and the register file output is used in address
calculations.

Computer Hardware and Software 397

SAYEH components that are used by its instructions include the
standard registers such as the Program Counter, Instruction Regis-
ter, the Arithmetic Logic Unit, and Status Register. In addition, this
processor has a register file forming registers R0, R1, R2 and R3 as
well as a Window Pointer that defines R0, R1, R2 and R3 within the
register file. CPU components and a brief description of each are
shown below.

PC: Program Counter, 16 bits
R0, R1, R2, and R3: General purpose registers part of the
register file, 16 bits
Reg File: The general purpose registers form a window of 4
in a register file of 64 registers
WP: Window Pointer points to the register file to define R0,
R1, R2 and R3, 6 bits
IR: Instruction Register that is loaded with a 16-bit, an 8-
bit, or two 8-bit instructions, 16 bits
ALU: The ALU that can AND, OR, NOT, Shift, Compare,
Add, Subtract and Multiply its inputs, 16 bit operands
Z flag: Becomes 1 when the ALU output is 0
C flag: Becomes 1 when the ALU has a carry output

10.1.1.2 SAYEH Instructions. The general format of 8-bit and 16-bit
SAYEH instructions is shown in Figure 10.2. The 16-bit instructions
have the Immediate field and the 8-bit instructions do not. The OP-
CODE filed is a 4-bit code that specifies the type of instruction. The
Left and Right fields are two bit codes selecting R0 through R3 for
source and/or destination of an instruction. Usually, Left is used for
destination and Right for source. The Immediate filed is used for im-
mediate data, or if two 8-bit instructions are packed, it is used for the
second instruction.

15 12 11 10 09 08 07 00

OPCODE Left Right Immediate

Figure 10.2 SAYEH Instruction Format

Our processor has a total of 29 instructions as shown in Table
10.1. Instructions with I immediate field are 16-bit instructions and
the rest are 8-bit instructions. Instructions that use the Destination
and Source fields (designated by D and S in the table of instruction
set) have an opcode that is limited to 4 bits. Instructions that do not

398 Chapter 10

require specification of source and destination registers use these
fields as opcode extensions. In addition to nop, hex code 0F is used as
filler for the right most 8-bits of a 16-bit word that only contains an 8-
bit instruction in its 8 left-most bits.

Table 10.1 Instruction Set of SAYEH

Instruction
Mnemonic and
Definition

Bits
15:0

RTL notation:
comments or
condition

nop No operation 0000-00-00 No operation
hlt Halt 0000-00-01 Halt, fetching stops
szf Set zero flag 0000-00-10 Z <= '1'
czf Clr zero flag 0000-00-11 Z <= '0'
scf Set carry flag 0000-01-00 C <= '1'
ccf Clr carry flag 0000-01-01 C <= '0'
cwp Clr

Window pointer
0000-01-10 WP <= "000"

mvr Move Register 0001-D-S RD <= RS
lda Load Addressed 0010-D-S RD <= (RS)
sta Store Addressed 0011-D-S (RD) <= RS
inp Input from port 0100-D-S In from RS write to RD
oup Output to port 0101-D-S Out to port RD from RS
and AND Registers 0110-D-S RD <= RD & RS
orr OR Registers 0111-D-S RD <= RD | RS
not NOT Register 1000-D-S RD <= ~RS
shl Shift Left 1001-D-S RD <= sla RS
shr Shift Right 1010-D-S RD <= sra RS
add Add Registers 1011-D-S RD <= RD + RS + C
sub Subtract

Registers
1100-D-S RD <= RD - RS – C

mul Multiply
Registers

1101-D-S RD <= RD * RS :8-bit
multiplication

cmp Compare 1110-D-S RD, RS (if equal:Z=1; if
RD<RS: C=1)

mil Move Immd Low 1111-D-00-I RDL <= {8’bZ, I}
mih Move Immd High 1111-D-01-I RDH <= {I, 8’bZ }
spc Save PC 1111-D-10-I RD <= PC + I
jpa Jump Addressed 1111-D-11-I PC <= RD + I
jpr Jump Relative 0000-01-11-I PC <= PC + I
brz Branch if Zero 0000-10-00-I PC <= PC + I :if Z is 1
brc Branch if Carry 0000-10-01-I PC <= PC + I :if C is 1
awp Add Win pntr 0000-10-10-I WP <= WP + I

Computer Hardware and Software 399

In the instruction set, addressed locations in the memory are in-
dicated by enclosing the address in a set of parenthesis. For these in-
structions, the processor issues ReadMem or WriteMem signals to the
memory. When input and output instructions (inp, oup) are executed,
SAYEH issues ReadIO or WriteIO signals to its IO devices.

10.1.2 SAYEH Datapath

The datapath of SAYEH is shown in Figure 10.3. The main compo-
nents of this machine are: Addressing Unit that consists of PC (Pro-
gram Counter) and Address Logic, IR (Instruction Register), WP
(Window Pointer), Register File that consists of Left Decoder1 and
Right Decoder2, ALU (Arithmetic Logic Unit), and Flags. As shown in
Figure 10.3, these components are either hardwired or connected
through three-state busses. Component inputs with multiple sources,
such as the right hand side input of ALU, use three-state busses.
Three-state busses in this structure are Dastabus and OpndBus. In
this figure, signals that are in italic are control signals issued by the
controller. These signals control register clocking, logic unit opera-
tions and placement of data in busses.

Figure 10.3 SAYEH Datapath

400 Chapter 10

10.1.2.1 Datapath Components. Figure 10.4 shows the hierarchical
structure of SAYEH components. The processor has a datapath and a
controller. Datapath components are Addressing Unit, IR, WP, Regis-
ter File, Arithmetic Unit, and the Flags register. The Addressing Unit
is further partitioned into the PC and Address Logic.
 The Addressing Logic is a combinational circuit that is capable of
adding its inputs to generate a 16-bit output that forms the address
for the processor memory. Program Counter and Instruction Register
are 16-bit registers. Register File is a two-port memory and a file of 64
16-bit registers. The Window Pointer is a 6-bit register that is used as
the base of the Register File. Specific registers for read and write (R0,
R1, R2 or R3) in the Register File are selected by its 4-bit input bus
coming from the Instruction Register. Two bits are used to select a
source register and other two bits select the destination register.
 When the Window Pointer is enabled, it adds its 6-bit input to its
current data. The Flags register is a 2-bit register that saves the flag
outputs of the Arithmetic Unit. The Arithmetic Unit is a 16-bit arith-
metic and logic unit that has logical, shift, add and compare opera-
tions. A 9-bit input selects one of the nine functions of the ALU. This
code is provided by the processor controller.

Figure 10.4 SAYEH Hierarchical Structure

Computer Hardware and Software 401

 Controller of SAYEH has eleven states for various reset, fetch,
decode, execute, and halt operations. Signals generated by the con-
troller control logic unit operations and register clocking in the
datapath.
 SAYEH sequential data components and its controller are trig-
gered on the rising edge of the main system clock. Control signals re-
main active after one rising edge through the next. This duration al-
lows for propagation of signals through the busses and logic units in
the datapath.

10.2 SAYEH VHDL Description
SAYEH is described according to the hierarchical structure of Figure
10.4. Data components are described separately, and then wired to
form the datapath. Controller is described in a single VHDL module.
In the complete SAYEH description, the datapath and controller are
wired together.
 The coding style used for the description of this processor is simi-
lar to that of the description of AddingCPU of Chapter 8. The CD ac-
companying this book has the complete code of this processor. As pre-
viously mentioned, only an outline and key parts of the VHDL code of
SAYEH will be included in this chapter.

10.2.1 Data Components
Combinational and sequential SAYEH data components are described
here. The combinational ones are like the ALU that performs arith-
metic and logical operations. The function of such units is controlled
by the controller. The sequential components are clocked with the
negative edge of the main CPU clock. These components have func-
tionalities like loading and resetting and are controlled by the con-
troller.

10.2.1.1 Addressing Unit. The Addressing Unit of Figure 10.5 con-
sists of the Program Counter and Address Logic. The Program
Counter is a simple register with enabling and resetting mechanisms,
while the Address Logic is a small arithmetic unit that performs add-
ing and incrementing for calculating PC or memory addresses.
 This unit has a 16-bit input coming from the Register File, an 8-bit
input from the Instruction Register, and a 16-bit address output.
Control signals of the Addressing Unit are ResetPC, PCplusI,
PCplus1, RplusI, Rplus0, and PCenable. These control signals select
what goes on the output of this unit. Shown in Figure 10.6 is the
VHDL code of the Program Counter. The Address Logic of Figure 10.7

402 Chapter 10

uses control signal inputs of the Addressing Unit to generate input
data to the Program Counter via the PCout of Figure 10.5. Constants
defined and used here correspond to one-hot control signals from the
controller.

ENTITY AddressingUnit IS
 PORT (
 Rside : IN std_logic_vector (15 DOWNTO 0);
 Iside : IN std_logic_vector (7 DOWNTO 0);
 Address : OUT std_logic_vector (15 DOWNTO 0);
 clk, ResetPC, PCplusI, PCplus1 : IN std_logic
 RplusI, Rplus0, EnablePC : IN std_logic
);
END AddressingUnit;

ARCHITECTURE dataflow OF AddressingUnit IS
 COMPONENT pc . . . END COMPONENT;
 COMPONENT al . . . END COMPONENT;

 SIGNAL pcout : std_logic_vector (15 DOWNTO 0);
 SIGNAL AddressSignal : std_logic_vector (15 DOWNTO 0);
BEGIN
 Address <= AddressSignal;
 l1 : pc PORT MAP (EnablePC, AddressSignal, clk, pcout);
 l2 : al PORT MAP
 (pcout, Rside, Iside, AddressSignal,
 ResetPC, PCplusI, PCplus1, RplusI, Rplus0);
END dataflow;

Figure 10.5 AddressingUnit VHDL Code

ENTITY ProgramCounter IS
 PORT (
 EnablePC : IN std_logic;
 input : IN std_logic_vector (15 DOWNTO 0);
 clk : IN std_logic;
 output : OUT std_logic_vector (15 DOWNTO 0)
);
END ProgramCounter;

ARCHITECTURE dataflow OF ProgramCounter IS BEGIN
 PROCESS (clk) BEGIN
 IF (clk = '1') THEN
 IF (EnablePC = '1') THEN
 output <= input;
 END IF;
 END IF;
 END PROCESS;
END dataflow;

Figure 10.6 ProgramCounter VHDL Code

Computer Hardware and Software 403

ENTITY AddressLogic IS
 PORT (
 PCside, Rside : IN std_logic_vector (15 DOWNTO 0);
 Iside : IN std_logic_vector (7 DOWNTO 0);
 ALout : OUT std_logic_vector (15 DOWNTO 0);
 ResetPC, PCplusI, PCplus1,RplusI,Rplus0: IN std_logic
);
END AddressLogic;

ARCHITECTURE dataflow OF AddressLogic IS
 CONSTANT one : std_logic_vector (4 DOWNTO 0)
 := "10000";
 CONSTANT two : std_logic_vector (4 DOWNTO 0)
 := "01000";
 CONSTANT three : std_logic_vector (4 DOWNTO 0)
 := "00100";
 CONSTANT four : std_logic_vector (4 DOWNTO 0)
 := "00010";
 CONSTANT five : std_logic_vector (4 DOWNTO 0)
 := "00001";
BEGIN
 PROCESS (PCside, Rside, Iside, ResetPC,
 PCplusI, PCplus1, RplusI, Rplus0)
 VARIABLE temp : std_logic_vector (4 DOWNTO 0);
 BEGIN
 temp := (ResetPC& PCplusI& PCplus1& RplusI& Rplus0);
 CASE temp IS
 WHEN one => ALout <= (OTHERS=>'0');
 WHEN two => ALout <= PCside + Iside;
 WHEN three => ALout <= PCside + 1;
 WHEN four => ALout <= Rside + Iside;
 WHEN five => ALout <= Rside;
 WHEN OTHERS => ALout <= PCside;
 END CASE;
 END PROCESS;
END dataflow;

Figure 10.7 AddressLogic VHDL Code

10.2.1.2 Arithmetic Unit. The ALU of SAYEH has nine functions
shown in Table 10.2. A Mnemonic and the control code of each func-
tion are also shown in this table. The complete code of the ALU is
shown in Figure 10.8. For readability, constants corresponding to the
mnemonics of Table 10.2 are defined and used in this code.

ALU control codes are one-hot. For example, the select input that
causes the ALU to perform the add operation is 0000001000, and it is
defined as AaddBH. Control inputs of this unit are B15to0, AandB,
AorB, notB, shlB, shrB, AaddB, AsubB, AmulB and AcmpB that se-
lect its various operations.

404 Chapter 10

ENTITY ArithmeticUnit IS
 PORT (
 A, B : IN std_logic_vector (15 DOWNTO 0);
 B15to0, AandB, AorB, notB : IN std_logic;
 shlB, shrB, AaddB, AsubB : IN std_logic;
 AmulB, AcmpB : IN std_logic;
 aluout : OUT std_logic_vector (15 DOWNTO 0);
 cin : IN std_logic;
 zout, cout : OUT std_logic
);
END ArithmeticUnit;

ARCHITECTURE dataflow OF ArithmeticUnit IS

 COMPONENT mult
 PORT (x, y : IN std_logic_vector (7 DOWNTO 0);
 z : OUT std_logic_vector (15 DOWNTO 0));
 END COMPONENT;
 FOR ALL : mult USE ENTITY work.mult_8by8 (bitwise);

 CONSTANT B15to0H : std_logic_vector (9 DOWNTO 0)
 := "1000000000";
 CONSTANT AandBH : std_logic_vector (9 DOWNTO 0)
 := "0100000000";
 CONSTANT AorBH : std_logic_vector (9 DOWNTO 0)
 := "0010000000";
 CONSTANT notBH : std_logic_vector (9 DOWNTO 0)
 := "0001000000";
 CONSTANT shlBH : std_logic_vector (9 DOWNTO 0)
 := "0000100000";
 CONSTANT shrBH : std_logic_vector (9 DOWNTO 0)
 := "0000010000";
 CONSTANT AaddBH : std_logic_vector (9 DOWNTO 0)
 := "0000001000";
 CONSTANT AsubBH : std_logic_vector (9 DOWNTO 0)
 := "0000000100";
 CONSTANT AmulBH : std_logic_vector (9 DOWNTO 0)
 := "0000000010";
 CONSTANT AcmpBH : std_logic_vector (9 DOWNTO 0)
 := "0000000001";

 SIGNAL product : std_logic_vector (15 DOWNTO 0);
 SIGNAL aluoutSignal : std_logic_vector (15 DOWNTO 0);

BEGIN
 PROCESS (A, B, B15to0, AandB, AorB, notB, shlB, shrB,
 AaddB, AsubB, AmulB, cin, aluoutSignal,
 product, AcmpB)
 VARIABLE temp : std_logic_vector (9 DOWNTO 0);
 VARIABLE sum : std_logic_vector (16 DOWNTO 0);
 VARIABLE sub : std_logic_vector (16 DOWNTO 0);
 BEGIN -- Continued

Computer Hardware and Software 405

 zout <= '0'; cout <= '0';
 aluoutSignal <= (OTHERS=>'0');
 temp := (B15to0, AandB, AorB, notB,
 shlB, shrB, AaddB, AsubB, AmulB, AcmpB);
 sum := A + B + (16 DOWNTO 1=> '0', 0=> cin) ;
 sub := A - B - (16 DOWNTO 1=> '0', 0=> cin);

 CASE temp IS
 WHEN B15to0H =>
 aluoutSignal <= B;
 WHEN AandBH =>
 aluoutSignal <= A and B;
 WHEN AorBH =>
 aluoutSignal <= A or B;
 WHEN notBH =>
 aluoutSignal <= not (B);
 WHEN shlBH =>
 aluoutSignal <= B (14 DOWNTO 0) & B (0);
 WHEN shrBH =>
 aluoutSignal <= B (15) & B (15 DOWNTO 1);
 WHEN AaddBH =>
 aluoutSignal <= sum (15 DOWNTO 0);
 cout <= sum (16);
 WHEN AsubBH =>
 aluoutSignal <= sub (15 DOWNTO 0);
 cout <= sub (16);
 WHEN AmulBH =>
 aluoutSignal <= product;
 WHEN AcmpBH =>
 aluoutSignal <= (OTHERS=>'1');
 IF (A>B) THEN
 cout <= '1';
 ELSE
 cout <= '0'; END IF;

 IF (A=B) THEN
 zout <= '1';
 ELSE
 zout <= '0'; END IF;
 WHEN OTHERS => aluoutSignal <= (OTHERS=>'0');
 END CASE;
 IF (aluoutSignal = "0000000000000000") THEN
 zout <= '1';
 END IF;
 END PROCESS;

 MULT8x8: mult PORT MAP (A (7 DOWNTO 0),
 B (7 DOWNTO 0), product);
 aluout <= aluoutSignal;

END dataflow;

Figure 10.8 ArithmeticUnit VHDL Code

406 Chapter 10

In order to insure that no unwanted latches are implied, all ALU
outputs are set to their inactive values at the beginning of the process
statement of its VHDL code. In a case statement in this code, aluout
and its flags outputs are set according to the selected control input of
the ALU.

The multiplication function (AmulBH) of the ALU is handled by
instantiating bitwise architecture of mult_8by8. This is the array
multiplier that we presented in Chapter 8. Instantiation of the multi-
plier appears near the end of the code in Figure 10.8. The output of
the multiplier is put on the product local signal and is assigned to
aluoutSignal in the body of the process statement of the ALU.

Instead of instantiating this predefined multiplier, we could use
the multiplication operation to leave the implementation of multipli-
cation up to the synthesis tool. Another alternative would be to use a
sequential multiplier such as add-and-shift or the Booth multiplier of
Chapter 8. In such cases, a separate clock and proper handshaking
would be required.

Table 10.2 ALU Operations

Mnemonic Description Code
B15to0H Place B on the output 1000000000
AandBH Place A and B on the output 0100000000
AorBH Place A or B on the output 0010000000
notBH Place not B on the output 0001000000
shlBH Shift B one bit to the left 0000100000
shrBH Shift B one bit to the right 0000010000
AaddBH Place A + B on the output 0000001000
AsubBH Place A - B on the output 0000000100
AmulBH Place A * B on the output 0000000010
AcmpBH Z = 1 if A = B; C = 1 if A < B 0000000001

10.2.1.3 Instruction Register. SAYEH Instruction Register is shown
in Figure 10.9. This unit is a 16-bit register with an active high load-
enable input. As shown, the only control input of the InstructionReg-
ister module is IRload.

10.2.1.4 Register File. Figure 10.10 shows the VHDL code of
SAYEH Register File. This is a two-port memory with a moving win-
dow pointer. Reading the register file is unclocked, while writing is
controlled by the rising edge of the clock. At all times, contents of two
locations appear on the right and left output ports (Rout, Lout) of the
register file.

Computer Hardware and Software 407

ENTITY InstrunctionRegister IS
 PORT (input : IN std_logic_vector (15 DOWNTO 0);
 IRload, clk : IN std_logic;
 output : OUT std_logic_vector (15 DOWNTO 0));
END InstrunctionRegister;

ARCHITECTURE dataflow OF InstrunctionRegister IS BEGIN
 PROCESS (clk) BEGIN
 IF (clk = '1') THEN
 IF (IRload = '1') THEN
 output <= input;
 END IF;
 END IF;
 END PROCESS;
END dataflow;

Figure 10.9 InstructionRegister VHDL Code

ENTITY RegisterFile IS
 PORT (
 input : IN std_logic_vector (15 DOWNTO 0);
 clk : IN std_logic;
 base : IN std_logic_vector (5 DOWNTO 0);
 Laddr, Raddr : IN std_logic_vector (1 DOWNTO 0);
 RFLwrite, RFHwrite : IN std_logic;
 Lout, Rout : OUT std_logic_vector (15 DOWNTO 0));
END RegisterFile;

ARCHITECTURE dataflow OF RegisterFile IS --MS: please check
 SIGNAL Raddress : std_logic_vector (5 DOWNTO 0);
 SIGNAL Laddress : std_logic_vector (5 DOWNTO 0);
BEGIN
 Laddress <= Base + Laddr;
 Raddress <= Base + Raddr;
 Lout <= MemoryFile (conv_integer(Laddress));
 Rout <= MemoryFile (conv_integer(Raddress));

 PROCESS (clk) BEGIN
 IF (clk = '1') THEN
 IF (RFLwrite = '1') THEN
 MemoryFile (conv_integer(Laddress))(7 DOWNTO 0)
 <= input(7 DOWNTO 0);
 END IF;
 IF (RFHwrite = '1') THEN
 MemoryFile(conv_integer(Laddress))(15 DOWNTO 8)
 <= input(15 DOWNTO 8);
 END IF;
 END IF;
 END PROCESS;
END dataflow;

Figure 10.10 RegisterFile VHDL Code

408 Chapter 10

For calculation of memory addresses, the base of the window
pointer (Base) is added to the left and right addresses (Laddr and
Raddr) and absolute addresses are calculated (Laddress and Rad-
dress). Memory words are read on appropriate left and right outputs
(Lout and Rout) from Laddress and Raddress absolute locations.

Writing into the memory is done in the location pointed by the
left absolute address, Laddress. The RFLwrite and RFHwrite control
signals decide whether a write is done to the low order or the high
order bits of the Register File. If both these signals are active, writing
is done in a 16-bit word addressed by Laddress.

10.2.1.5 Window Pointer. The VHDL code of the Window Pointer is
shown in Figure 10.11. This unit has two control lines; one is for re-
setting it and the other is for adding its 6-bit input to its register con-
tents. As with other register structures of SAYEH, this register is
positive edge triggered.

ENTITY WindowPointer IS
 PORT (
 input : IN std_logic_vector (5 DOWNTO 0);
 clk : IN std_logic;
 WPreset, WPadd : IN std_logic;
 output : OUT std_logic_vector (5 DOWNTO 0)
);
END WindowPointer;

ARCHITECTURE dataflow OF WindowPointer IS
 SIGNAL outputSignal : std_logic_vector (5 DOWNTO 0);
BEGIN

 PROCESS (clk)
 BEGIN
 IF (clk = '1') THEN
 IF (WPreset = '1') THEN
 outputSignal <= "000000";
 ELSIF (WPadd = '1') THEN
 outputSignal <= outputSignal + input;
 END IF;
 END IF;
 END PROCESS;

 output <= outputSignal;

END dataflow;

Figure 10.11 WindowPointer VHDL Code

Computer Hardware and Software 409

10.2.1.6 Status Register. SAYEH Status Register is a collection of
two flags that are set or reset according to their control signals. The
VHDL code of this register is shown in Figure 10.12. This unit has
five control signals for setting and resetting the two flags and for its
synchronous load control. The latter (SRload) is used when an ALU
operation is to affect the status flags. As with other register struc-
tures of SAYEH, this register is positive edge triggered.

ENTITY StatusRegister IS
 PORT (
 Cin, Zin, SRload, clk : IN std_logic;
 Cset, Creset, Zset, Zreset : IN std_logic;
 Cout, Zout : OUT std_logic
);
END StatusRegister;

ARCHITECTURE dataflow OF StatusRegister IS BEGIN
 PROCESS (clk) BEGIN
 IF (clk = '1') THEN
 IF (SRload = '1') THEN
 Cout <= Cin;
 Zout <= Zin;
 ELSIF (Cset='1') THEN
 Cout <= '1';
 ELSIF (Creset='1') THEN
 Cout <= '0';
 ELSIF (Zset='1') THEN
 Zout <= '1';
 ELSIF (Zreset='1') THEN
 Zout <= '0';
 END IF;
 END IF;
 END PROCESS;
END dataflow;

Figure 10.12 StatusRegister VHDL Code

10.2.2 SAYEH Datapath

Figure 10.13 shows the datapath entity and architecture of SAYEH.
This unit specifies component instantiations and bussing structure of
the CPU according to the diagram of Figure 10.3. Inputs of this mod-
ule are the processor’s data and address busses, as well as control
signals that are provided by the controller of the CPU. Control signals
shown in the Data Path are routed to the instantiated data compo-
nents or to the internal buses that are specified in this module.

410 Chapter 10

ENTITY DataPath IS
 PORT (
 clk : IN std_logic;
 Databus : inout std_logic_vector (15 DOWNTO 0);
 Addressbus : OUT std_logic_vector (15 DOWNTO 0);
 ResetPC, PCplusI, PCplus1, RplusI, Rplus0,
 Rs_on_AddressUnitRSide, Rd_on_AddressUnitRSide,
 EnablePC, B15to0, AandB, AorB, notB, shlB, shrB,
 AaddB, AsubB, AmulB, AcmpB, RFLwrite, RFHwrite,
 WPreset, WPadd, IRload, SRload,
 Address_on_Databus, ALU_on_Databus,
 IR_on_LOpndBus, IR_on_HOpndBus,
 RFright_on_OpndBus,
 Cset, Creset, Zset, Zreset, shadow : IN std_logic;
 Instruction : OUT std_logic_vector (7 DOWNTO 0);
 Cout, Zout, ShadowEn : OUT std_logic
);
END DataPath;

ARCHITECTURE dataflow OF DataPath IS
 COMPONENT AU . . . END COMPONENT;
 COMPONENT ALU . . . END COMPONENT;
 COMPONENT RF . . . END COMPONENT;
 COMPONENT IR . . . END COMPONENT;
 COMPONENT SR . . . END COMPONENT;
 COMPONENT WP . . . END COMPONENT;

 SIGNAL Right, Left, OpndBus, ALUout, IRout, Address,
 AddressUnitRSideBus : std_logic_vector (15 DOWNTO 0);
 SIGNAL SRCin, SRZin, SRZout, SRCout : std_logic;
 SIGNAL WPout : std_logic_vector (5 DOWNTO 0);
 SIGNAL Laddr, Raddr : std_logic_vector (1 DOWNTO 0);

BEGIN
 AddressingUnit : AU PORT MAP (
 AddressUnitRSideBus, IRout (7 DOWNTO 0), Address,
 clk, ResetPC, PCplusI, PCplus1, RplusI, Rplus0,
 EnablePC);
 ArithmeticUnit : ALU PORT MAP (
 Left, OpndBus, B15to0, AandB, AorB, notB, shlB, shrB,
 AaddB, AsubB, AmulB, AcmpB, ALUout, SRCout,
 SRZin, SRCin);
 RegisterFile : RF PORT MAP (
 Databus, clk, WPout, Laddr, Raddr, RFLwrite,
 RFHwrite, Left, Right);
 InstrunctionRegister : IR PORT MAP (Databus, IRload,
 clk, IRout);
 StatusRegister : SR PORT MAP (SRCin, SRZin, SRload, clk,
 Cset, Creset, Zset, Zreset, SRCout, SRZout);
 WindowPointer : WP PORT MAP (IRout (5 DOWNTO 0), clk,
 WPreset, WPadd, WPout);

 -- Continued

Computer Hardware and Software 411

 AddressUnitRSideBus <=
 Right WHEN Rs_on_AddressUnitRSide='1' ELSE
 Left WHEN Rd_on_AddressUnitRSide='1' ELSE
 (OTHERS=>'Z');

 Addressbus <= Address;

 Databus <=
 Address WHEN Address_on_Databus = '1' ELSE
 ALUout WHEN ALU_on_Databus = '1' ELSE
 (OTHERS=>'Z');

 OpndBus (7 DOWNTO 0) <=
 IRout (7 DOWNTO 0) WHEN IR_on_LOpndBus = '1' ELSE
 (OTHERS=>'Z');

 OpndBus (15 DOWNTO 8) <=
 IRout (7 DOWNTO 0) WHEN IR_on_HOpndBus = '1' ELSE
 (OTHERS=>'Z');

 OpndBus <=
 Right WHEN RFright_on_OpndBus = '1' ELSE
 (OTHERS=>'Z');

 Zout <= SRZout;

 Cout <= SRCout;

 Instruction <=
 IRout(15 DOWNTO 8) WHEN Shadow = '0' ELSE
 IRout(7 DOWNTO 0);

 ShadowEn <=
 '0' WHEN IRout (7 DOWNTO 0) = "00001111" ELSE
 '1';

 Laddr <=
 IRout (11 DOWNTO 10) WHEN Shadow = '0' ELSE
 IRout (3 DOWNTO 2);

 Raddr <=
 IRout (9 DOWNTO 8) WHEN Shadow = '0' ELSE
 IRout (1 DOWNTO 0);

END dataflow;endmodule
Figure 10.13 SAYEH DataPath Module

Following the declarations, the dataflow architecture of the Data
Path instantiates Addressing Unit, Arithmetic Unit, Register File,
Instruction Register, Status Register, and the Window Pointer. Con-
trol signals that are inputs of DataPath are passed from this module

412 Chapter 10

to the data components via their ports. For example, ResetPC that is
an input of DataPath and a control signal of AddressingUnit appears
on the port list of AddressingUnit in its instantiation statement.

The part that follows module instantiations makes bus assign-
ments to the internal buses of this module. For example, assignment
of the output of ArithmeticUnit to Databus that is controlled by
ALU_on_Databus is done by a conditional signal assignment. Note
the assignment of (OTHERS=>’Z’) to Databus when none of the con-
trol signals of this bus are active.

In the last part of the DataPath module, bits of IRout (IRout is
connected to the output of IR) that indicate source and destination
registers to the Register File are placed on Laddr and Raddr inputs
of this register. The Shadow signal that becomes ‘1’ if a shadow in-
struction is being executed is used to select appropriate bits of the IR
as source and destination addresses.

10.2.3 SAYEH Controller
The controller of SAYEH is a state machine with eleven states that
issues appropriate control signals to the Data Path. The controller
uses the Huffman style of coding, in which the state machine has a
large combinational part that is responsible for state transitions and
issuing controller outputs. State transitions are done by setting next
state values to the Nstate. Figure 10.14 shows a general outline of
this controller. Various sections of this outline are discussed below.

10.2.3.1 Controller Ports. The instruction register output, ALU
flags, and external control signals constitute the inputs of the control-
ler. The outputs of the controller are 38 control signals going to the
Data Path and a Shadow output that indicates that the controller is
handling a shadow instruction. Memory ready and a shadow enable
signal are among other inputs of the controller. The ShadowEN input
comes from a logic circuit in the datapath telling if the shadow space
of the present instruction (bits 7 down to 0 of an 8-bit instruction) has
a valid instruction.

All the controller outputs are assigned inactive ‘0’ values at the
beginning of the StateSeq process. These outputs are issued by this
process depending on the instruction and the state of the machine.

10.2.3.2 Control States. An enumeration type declaration in the
controller description declares the states of the processor. The type
used is state and is used for declaring Pstate and Nstate signals for
the present and next states of the controller. As mentioned, the cod-
ing style of the controller is according to the Huffman style of coding
discussed in Chapter 8.

Computer Hardware and Software 413

States reset and halt are for the initial state of the machine and
its halt state. In state fetch the machine begins fetching a 16-bit in-
struction that can include an 8-bit instruction and a shadow. State
memread is entered while our controller is waiting for memDa-
taReady signal from the memory indicating that its data is ready.
Execution of instructions is performed in the exec1 state. This state
is entered from the memread state. The lda instruction that is not
completed by the exec1 state requires the additional state of exec1lda
to complete its memory read. States exec2 and exec2lda are like exec1
and exec1lda except that they handle the shadow part of an instruc-
tion. The execute state of most instructions (exec1 or exec2) increment
the program counter while the instruction is being executed. How-
ever, certain instructions that use the address bus for their execution
cannot increment PC while they are being executed. For these in-
structions, the incpc state increments the program counter.

10.2.3.3 Opcodes. Referring to Figure 10.14, instruction opcodes
are declared as 4-bit parameters in the controller of SAYEH. These
parameters are according to the processor’s instruction set of Table
10.1.

10.2.3.4 State Machine Flow. The StateSeq process shown in Figure
10.14 is entered every time the processor clock clocks a new state in
Pstate. This process has a case statement with case alternatives for
every state of the controller.

Most of the case alternatives are responsible for issuing just a
few control signals. For example, the memread state issues the mem-
ory read signal and conditionally issues IRload when memDataReady
informs the processor that data from the memory is ready.

On the other hand, controller states exec1 and exec2 handle most
of the tasks for execution of the processor instructions. In the blocks
of code corresponding to these case alternatives, there are several
case statements that use the instruction opcode for their case expres-
sions. The case alternatives corresponding to these inner case expres-
sions are for the execution of the individual instructions of the proc-
essor. Figure 10.14 shows the general outline of these nested case
statements.

10.2.3.5 Shadow Instructions. The ShadowEn signal that is an in-
put to the controller is set when the hex code 0F (this code indicates
that the right-most bits are not used) is not found in the right-most
eight bits of a 16-bit instruction. If this input is ‘1’ and execution of an
8-bit instruction is complete, the controller branches to exec2 to exe-
cute the second half of the instruction before the next fetching begins.

414 Chapter 10

ENTITY controller IS
 PORT (ExternalReset, clk : IN std_logic;
 ResetPC, PCplusI, PCplus1, RplusI, . . .
 . . . , Zset, Zreset, Shadow : OUT std_logic;
 Instruction : IN std_logic_vector (7 DOWNTO 0);
 . . . , memDataReady, ShadowEn : IN std_logic)
END controller;
--
ARCHITECTURE dataflow OF controller IS
 TYPE state IS
 (reset, halt, fetch, memread, exec1, exec2,
 exec1lda, exec1sta, exec2lda, exec2sta, incpc);

 CONSTANT b0000: std_logic_vector (3 DOWNTO 0) := "0000";
 CONSTANT b1111: std_logic_vector (3 DOWNTO 0) := "1111";

 CONSTANT nop: std_logic_vector (3 DOWNTO 0) := "0000";
 . . .
 CONSTANT mvr: std_logic_vector (3 DOWNTO 0) := "0001";

 SIGNAL Pstate, Nstate : state;

BEGIN
 StateSeq: PROCESS (Instruction, Pstate, ExternalReset,
 Cflag, Zflag, memDataReady, ShadowEn)
 BEGIN
 ResetPC <= '0'; PCplusI <= '0'; PCplus1 <= '0';
 RplusI <= '0'; Rplus0 <= '0'; EnablePC<= '0';
 B15to0 <= '0'; AandB <= '0'; AorB <= '0';
 . . .
 Rs_on_AddressUnitRSide <= '0';
 Rd_on_AddressUnitRSide <= '0';

 CASE Pstate IS
 WHEN reset =>
 . . .
 WHEN halt =>

 WHEN fetch =>

 WHEN memread =>

 WHEN exec1 =>
 CASE Instruction (7 DOWNTO 4) IS
 WHEN b0000 =>
 CASE Instruction (3 DOWNTO 0) IS
 WHEN nop =>
 . . .
 END CASE;
 . . .
 WHEN mvr =>
 -- Reg Operations (Src and Dest)
-- Continued

Computer Hardware and Software 415

 WHEN b1111 =>
 CASE Instruction (1 DOWNTO 0) IS
 WHEN mil =>
 . . .
 END CASE;
 END CASE;
 WHEN exec1lda =>
 . . .
 WHEN exec1sta =>
 . . .
 WHEN exec2 =>
 . . .
 WHEN exec2lda =>
 . . .
 WHEN exec2sta =>
 . . .
 WHEN incpc =>
 . . .
 END CASE;
 END PROCESS;

 Clocking: PROCESS (clk) BEGIN
 IF (clk = '1') THEN
 Pstate <= Nstate;
 END IF;
 END PROCESS;
END dataflow;

Figure 10.14 SAYEH Controller General Outline

10.2.3.6 Combinational Block. The combinational block of SAYEH
controller is the process statement that is labeled as StateSeq in the
code of Figure 10.14. Transitions from one state to another (i.e., as-
signments to Nstate) and issuing control signals are performed in the
case statement. As discussed above, to avoid latches, at the beginning
of this process statement all control signals are set to their inactive
values.

10.2.3.7 Sequential Block. The last part of the code outline of
Figure 10.14 is the process statement that is responsible for clocking
the state registers. This process statement is labeled Clocking and is
sensitive to the positive edge of the clock. With each clock this process
clocke Pstate into Nstate. Control signals issued by the controller re-
main active through the next rising edge of the system clock.

10.2.3.8 Instruction Execution. Figure 10.15 zooms on the combina-
tional process of the dataflow architecture of controller and shows the
details of execution of mvr in the exec1 state of the controller. Signals
issued for the execution of this instruction are shown in this figure.

416 Chapter 10

This instruction reads a word from the right address of the Register
File and writes it into its left address. The right and left (source and
destination) addresses are provided in the Data Path by connections
made from IR to the Register File.

The RFright_on_OpndBus control signal is issued to read the
source register from RegisterFile onto OpndBus. Since this bus is the
input of the ALU, the data on the ALU’s right input (B) must pass
through it to reach its output. For this purpose, the B15to0 control
input of ALU is issued. Once the data reaches the ALU output, it be-
comes available at the input of the Register File. Issuing RFLwrite
and RFHwrite cause data to be written into the destination into Reg-
isterFile.

StateSeq: PROCESS (Instruction, Pstate, ExternalReset,
 Cflag, Zflag, memDataReady, ShadowEn)
 . . .
BEGIN
 . . .
 CASE Pstate IS
 . . .
 WHEN exec1 =>
 CASE Instruction (7 DOWNTO 4) IS
 WHEN b0000 =>
 . . .
 WHEN mvr =>
 RFright_on_OpndBus <= '1';
 B15to0 <= '1';
 ALU_on_Databus <= '1';
 RFLwrite <= '1';
 RFHwrite <= '1';
 SRload <= '1';
 IF (ShadowEn='1') THEN

Nstate <= exec2;
 ELSE
 PCplus1 <= '1';
 EnablePC <= '1';
 Nstate <= fetch;
 END IF;
 WHEN lda =>
 Rplus0 <= '1';
 Rs_on_AddressUnitRSide <= '1';
 ReadMem <= '1';
 Nstate <= exec1lda;
 . . .
 WHEN b1111 =>
 . . .
 END CASE;
 END CASE;
END PROCESS;

Figure 10.15 Instruction Execution

Computer Hardware and Software 417

The partial code of Figure 10.15 also shows assignment of exec2
to Nstate if the instruction we are executing has a shadow. Otherwise,
signals for incrementing the Program Counter are issued and the
next state is set to fetch.

10.2.3.9 Memory Handshaking. The execution discussed above ap-
plies to most SAYEH instructions. However, instructions that require
memory access, e.g., lda, require extra clocks for reading the memory.
The first part of the execution of lda is shown in Figure 10.15. As
shown, for the execution of this instruction, the address is read from
Register File and put on the address bus. At the same time, Read-
Mem is issued to initiate the memory read process.

StateSeq: PROCESS (Instruction, Pstate, ExternalReset,
 Cflag, Zflag, memDataReady, ShadowEn)
 . . .
BEGIN
 CASE Pstate IS
 . . .
 WHEN exec1lda =>
 IF (ExternalReset = '1') THEN
 Nstate <= reset;
 ELSE
 IF (memDataReady = '0') THEN
 Rplus0 <= '1';
 Rs_on_AddressUnitRSide <= '1';
 ReadMem <= '1';
 Nstate <= exec1lda;
 ELSE
 RFLwrite <= '1';
 RFHwrite <= '1';
 IF (ShadowEn='1') THEN
 Nstate <= exec2;
 ELSE
 PCplus1 <= '1';
 EnablePC <= '1';
 Nstate <= fetch;
 END IF;
 END IF;
 END IF;
 . . .
 END CASE;
END PROCESS;

Figure 10.16 Memory Handshaking for exec1lda

Also shown in Figure 10.15, the next state for execution of lda af-
ter exec1 is exec1lda. Details of this state are shown in the partial
code of Figure 10.16. In this state, ReadMem continues to be issued

418 Chapter 10

and state remains in exec1lda until memDataReady becomes ‘1’. In
this case, memory data that is available on Databus will be clocked
into RegisterFile by issuing RFLwrite and RFHwrite.
 Executions of other SAYEH instructions are similar to the ex-
amples we discussed. The complete VHDL code of SAYEH controller
is over 800 lines and is included on the CD that accompanies this
book.

10.2.4 Complete SAYEH Processor
Partial code corresponding to the top-level VHDL code of SAYEH is
shown in Figure 10.17. This code consists of instantiation of
DataPath and controller architectures. In the dataflow architecture of
Sayeh, control signal outputs of controller are wired to the similarly
named signals of DataPath. The ports of the processor are according
to the block diagram of Figure 10.1.

ENTITY Sayeh IS
 PORT (
 clk : IN std_logic;
 ReadMem, WriteMem, ReadIO, WriteIO : OUT std_logic;
 . . .
);
END Sayeh;

ARCHITECTURE dataflow OF Sayeh IS
 COMPONENT dp . . . END COMPONENT;
 COMPONENT ctrl . . . END COMPONENT;

 SIGNAL Instruction : std_logic_vector (7 DOWNTO 0);
 SIGNAL ResetPC, PCplusI, PCplus1, . . .
BEGIN

 datapath : dp PORT MAP (
 clk, Databus, Addressbus, ResetPC, PCplusI, . . .
 Zreset, shadow, Instruction, Cflag, Zflag, ShadowEn
);

 controller : ctrl PORT MAP (
 ExternalReset,
 clk, ResetPC, PCplusI, . . .
);

END dataflow;

Figure 10.17 SAYEH Top Level Description

Computer Hardware and Software 419

10.3 SAYEH Testbench / Assembler / Memory Model
The complete VHDL description of SAYEH consists of component de-
scriptions like registers, counters, logic units, and a state machine for
its controller. Chapter 9 has shown how such components can be
tested with testbenches for data application and response monitoring.
Obviously testing SAYEH begins with testing its components using
such techniques. On the other hand, a complete test of the processor
when all its tested components are put together is still necessary.
This section discusses top-level testing of SAYEH.
 In a testbench, we instantiate SAYEH, and through a memory
model, we apply instructions to the CPU and watch its response to
these test instructions. For developing such a top-level testbench that
is easy for the design engineer to work with, two issues must be con-
sidered: Test data format and memory size handling.

Test data format must be at a high level so that the designer
testing the CPU can apply large volumes of instructions and data to
the CPU. For this purpose, our testbench takes test data in the form
of SAYEH instructions and translates them to binary data for the
processor to be tested. This scheme was used for our simple Adding-
CPU and was discussed in the previous section. SAYEH testbench
has such a translation program that is, of course, much larger than
that of AddingCPU.

The other issue that must be considered for a testbench for this
design is memory size handling. Recall that our AddingCPU example
did all its reading and writings directly into an external file repre-
senting its complete memory. Having the complete memory image in
one file is not practical for the relatively large size of SAYEH mem-
ory. Furthermore, moving the complete memory image of the proces-
sor being tested into its testbench and declaring it as a two dimen-
sional variable requires too much memory of the computer perform-
ing the simulation. In a large design, the actual memory of a design
being tested may be larger than the computer it is being tested on.

In developing a testbench for SAYEH, we focus on the issue of
memory size handling discussed above. Instead of having all memory
image in one file, or all of it declared as a variable, we take an in-
between approach. We partition our memory into several pages, and
use one file for each page. The file corresponding to a page is named
according to the page number it represents. Then, the actual test-
bench declares a variable of the size of only one such page. This vari-
able is regarded as a buffer. When the CPU model addresses a mem-
ory location, the testbench checks to see if that is available in the
buffer. If so, data from the buffer will be read or written into accord-
ing to the CPU request. On the other hand, if a memory location is
addressed that is not in the buffer, the testbench writes the contents

420 Chapter 10

of the buffer into its corresponding memory file, and loads the page
that has the addressed location into the buffer.

Figure 10.18 shows the overall structure of our testbench. The
sections that follow discuss the details of the VHDL code of this test-
bench. The complete code of this testbench is included in the CD that
accompanies this book. Parts of this testbench that have to do with
memory swapping can be used as a file-based memory model.

Figure 10.18 Graphical Representation of SAYEH Testbench

10.3.1 Top Level VHDL Testbench
The outline of the VHDL code of SAYEH testbench is shown in Figure
10.19. In this code, the processor and its memory are instantiated and
a clock signal is provided. The memory provides proper instructions
for the processor to execute. The instructions are synchronized with
the edge of the system clock.

Figure 10.18 is the graphical representation of SAYEH test-
bench. In this figure the box marked “Sayeh” is the processor and
everything to its right is included in the functionality of the Sayeh-
Memory(behavioral) that is instantiated in the testbench.

Computer Hardware and Software 421

ENTITY TestSayeh IS
END ENTITY TestSayeh;

ARCHITECTURE dataflow OF TestSayeh IS
 SIGNAL clk : std_logic := '0';
 SIGNAL ReadMem, WriteMem, ReadIO, WriteIO : std_logic;
 SIGNAL ExternalReset, memdataready : std_logic;
 SIGNAL Databus : std_logic_vector(15 DOWNTO 0);
 SIGNAL Addressbus : std_logic_vector(15 DOWNTO 0);
BEGIN

 clk <= NOT (clk) AFTER 5 NS WHEN now < 1000000 NS ELSE
 clk;
 ExternalReset <= '1', '0' after 27 ns;

 processor : ENTITY WORK.Sayeh(dataflow) PORT MAP
 (clk, ReadMem, WriteMem, ReadIO, WriteIO,
 Databus, Addressbus, ExternalReset, memdataready
);

 memory : ENTITY WORK.SayehMemory(behavioral) PORT MAP
 (clk, ReadMem, WriteMem,
 Addressbus, DataBus, memdataready
);

END dataflow;

Figure 10.19 Top-Level SAYEH Testbench

10.3.2 Memory Model

The testbench of Figure 10.20 instantiates SayehMemory and wires it
to the processor. This memory is responsible for reading a page from
the memory external files, translating it to hex, loading a buffer page
of internal memory, reading and writing from it, and finally writing
memory contents back to the external files. The sections that follow
discuss each of these tasks.
 At initialization, before the simulation begins, the assembler pro-
cedure reads a page of instruction from an instruction file and puts
its hex equivalent into buffermem. The UpdateFile procedure, with
argument 1, puts this hex image in page 1 of the memory. When the
simulation begins, the translated program is available in the memory
buffer starting from location 0. Consequent readings of instructions
will be done from this memory.
 The page of the memory that resides in the memory model of
Figure 10.20 is buffermem that is of type mem_type. This type is a 1K
array of 16-bit words.

422 Chapter 10

ENTITY Sayehmemory IS
 GENERIC (blocksize : integer := 1024;
 segmentsno : integer := 64);
 PORT (
 clk, readmem, writemem : IN STD_LOGIC;
 addressbus : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
 databus : INOUT STD_LOGIC_VECTOR (15 DOWNTO 0);
 memdataready : OUT std_logic
);
END Sayehmemory;

ARCHITECTURE behavioral OF Sayehmemory IS
 TYPE mem_type IS ARRAY (0 TO blocksize-1) OF
 STD_LOGIC_VECTOR (15 DOWNTO 0);
 --Data TYPE for a seqment OF memory
BEGIN
 RW: PROCESS (clk)
 VARIABLE buffermem : mem_type
 := (OTHERS=> (OTHERS=>'0'));
 VARIABLE ad : INTEGER;
 VARIABLE memloadedno : integer := segmentsno+1;
 VARIABLE changemem : BOOLEAN := false;
 VARIABLE init : boolean := true;
 BEGIN
 IF (init = true) THEN

assembler (buffermem);
UpdateFILE (buffermem, 1);

 memloadedno := 1;
 init := false;
 END IF;

 IF (clk = '0') THEN
 IF (readmem = '1') THEN
 . . . -- Figure 10.22
 ELSIF (writemem = '1') THEN
 . . . -- Figure 10.23
 END IF;
 END IF;
 END PROCESS;
END behavioral;

Figure 10.20 SAYEH Memory Model

10.3.3 Assembler
A procedure that is called assembler handles translation of instruc-
tions to hex. The instruction input file is prog.txt. This file is read,
translated to hex, and is returned via the argument of assembler.
When translated to hex, instructions and data in prog.txt are placed
in appropriate locations in the memory buffer.

Computer Hardware and Software 423

PROCEDURE assembler (VARIABLE mem : OUT mem_type) IS
 FILE code : TEXT OPEN READ_MODE IS "prog.txt";
 VARIABLE instr : LINE;

 VARIABLE addr_std_v : std_logic_vector(15 DOWNTO 0);
 VARIABLE memonic : string (4 DOWNTO 1);
 VARIABLE im_ch : character;
 VARIABLE immediate : std_logic_vector (7 DOWNTO 0);
 VARIABLE window_ptr : std_logic_vector (5 DOWNTO 0);
 VARIABLE dest_reg : std_logic_vector (3 DOWNTO 0);
 VARIABLE src_reg : std_logic_vector (3 DOWNTO 0);

 VARIABLE immi_str2 : string (2 DOWNTO 1);
 VARIABLE adr : integer := -1;
 VARIABLE shadowEn : boolean := false;
BEGIN
 WHILE NOT ENDFILE (code) LOOP
 READLINE (code, instr);
 HREAD (instr, addr_std_v);
 READ (instr, memonic);
 CASE memonic IS
 . . .
 WHEN " mvr" =>
 IF (shadowEn=true) THEN
 mem (adr) (7 DOWNTO 4) := "0001";
 READ (instr, immi_str2);
 HREAD (instr, dest_reg);
 mem (adr)(3 DOWNTO 2):=dest_reg (1 DOWNTO 0);
 READ (instr, immi_str2);
 HREAD (instr, src_reg);
 mem (adr) (1 DOWNTO 0):=src_reg (1 DOWNTO 0);
 ELSE
 adr := adr+1;
 mem (adr) (15 DOWNTO 12) := "0001";
 READ (instr, immi_str2);
 HREAD (instr, dest_reg);
 mem(adr)(11 DOWNTO 10):=dest_reg(1 DOWNTO 0);
 READ (instr, immi_str2);
 HREAD (instr, src_reg);
 mem (adr) (9 DOWNTO 8):=src_reg (1 DOWNTO 0);
 mem (adr) (7 DOWNTO 0) := shadowins;
 END IF;
 shadowEn := NOT shadowEn;
 . . .
 WHEN OTHERS =>
 mem (adr) := (OTHERS=>'0');
 END CASE;
 END LOOP;
 FILE_CLOSE (code);
END PROCEDURE assembler;

Figure 10.21 SAYEH Assembler in VHDL

424 Chapter 10

The assembler procedure of SAYEH testbench is similar to Con-
vert of AddingCPU testbench, except that assembler handles more
instructions (all of SAYEH instructions) and writes 16-bit data into
its buffer argument. As in Convert, if instead of a mnemonic, “:::”
appears in a line of prog.txt, assembler treats it as a directive for writ-
ing data directly into the specified memory location.

The declaration part of the assembler procedure and the part of
its code that generates the hex code for the mvr instruction are shown
in Figure 10.21. Instructions are read and placed in the mem output
of assembler starting from location 0. The address handling mem lo-
cations is adr. This procedure takes advantage of the std_logic TEX-
TIO package for reading the instruction file.

10.3.4 Memory Read

The RW process of Figure 10.20 initiates the memory read procedure.
The details of this procedure are shown in Figure 10.22. If the ad-
dressed memory is greater than the allowed memory size, (OTHERS
=> ‘Z’) will be assigned to databus.

If the memory address is valid, the memory page number is cal-
culated and if it is different from the existing page, the existing page
is written to its corresponding file using the UpdateFile procedure.
Following this, the required page is read into beffermem using Mem-
Load, and the required address is looked up from buffermem location.

IF (clk = ‘0’) THEN
 IF (readmem = '1') THEN
 memdataready <= '0';
 IF (ad >= (segmentsno*blocksize)) THEN
 databus <= (OTHERS => 'Z');
 ELSE
 IF (memloadedno /= ((ad/blocksize)+1)) THEN
 IF memloadedno /= (segmentsno+1) THEN
 IF changemem=true THEN
 UpdateFILE (buffermem, memloadedno);
 END IF;
 END IF;
 MemLoad (buffermem, ((ad/blocksize)+1));
 changemem := false;
 memloadedno := (ad/blocksize)+1;
 databus <= buffermem (ad mod blocksize);
 ELSE
 databus <= buffermem (ad mod blocksize);
 END IF;
 END IF;
memdataready <= '1';

Figure 10.22 Reading from the Memory

Computer Hardware and Software 425

10.3.5 Memory Write

The RW process of Figure 10.20 initiates the memory write part of
this process. Figure 10.23 shows the details of memory writing. Tasks
performed here are very similar to those of the read part of the RW
process. At all times, buffermem holds the current active memory
buffer. When the buffer needs to be cleared for a new addressed page,
UpdateFile writes buffermem into the appropriate file. A new re-
quested page is loaded into buffermem using the MemLoad procedure.
Both these procedures use memloadno to build the memory file name
corresponding to the block being updated or loaded.

IF (clk = ‘0’) THEN
 ELSIF (writemem = '1') THEN
 memdataready <= '0';
 IF (ad < (segmentsno*blocksize)) THEN
 IF (memloadedno = ((ad/blocksize)+1)) THEN
 IF buffermem (ad mod blocksize) /= databus THEN
 changemem := true;
 END IF;
 buffermem (ad mod blocksize) := databus;
 IF changemem=true THEN
 UpdateFILE (buffermem, memloadedno);
 changemem := false;
 END IF;
 ELSE
 IF memloadedno /= (segmentsno+1) THEN
 IF changemem=true THEN
 UpdateFILE (buffermem, memloadedno); END IF;
 END IF;
 memloadedno := (ad/blocksize)+1;
 MemLoad (buffermem, memloadedno);
 changemem := false;
 IF buffermem (ad mod blocksize)/= databus THEN
 changemem := true;
 END IF;
 buffermem (ad mod blocksize) := databus;
 IF changemem=true THEN
 UpdateFILE (buffermem, memloadedno);
 changemem := false;
 END IF;
 END IF;
 END IF;
 memdataready <= '1';
END IF;

Figure 10.23 Writing into the Memory

426 Chapter 10

10.3.6 Memory File Handling

The MemLoad procedure, shown in Figure 10.24, reads a page of
memory from file f and puts it in its beffermem output. The Update-
File that is also shown here writes its buffermem argument into file f.
Both procedures use the fileno integer for identifying the file to read
or write. Using ‘IMAGE attribute and concatenation operations, the
fileno integer is used to generate a physical file name that corre-
sponds to the page of memory for input or output. These procedures
use std_logic TEXTIO read and write procedures.

--Load a segment from a file
PROCEDURE MemLoad (buffermem : OUT mem_type;
 fileno : IN integer) IS
 VARIABLE hexcode : String (4 DOWNTO 1);
 VARIABLE memline : LINE;
 VARIABLE offset : integer := 0;
 VARIABLE err_check : file_open_status;
 VARIABLE hexcode_v : std_logic_vector (15 DOWNTO 0);
 FILE f : TEXT;
BEGIN
 buffermem := (OTHERS => (OTHERS =>'0'));
 FILE_OPEN (err_check, f,
 ("mem" & integer'IMAGE (fileno) & ".hex"),
 READ_MODE);
 IF err_check = open_ok THEN
 WHILE not ENDFILE (f) LOOP
 readline (f, memline);
 HREAD (memline, hexcode_v);
 buffermem (offset) := hexcode_v;
 offset := offset+1;
 END LOOP;
 file_close (f);
 END IF;
END memload;

--Write memory data of a segment to its corresponding file
PROCEDURE updateFILE (buffermem : IN mem_type;
 fileno : IN integer) IS
 VARIABLE memline : line;
 FILE f : TEXT OPEN WRITE_MODE IS
 ("mem" & integer'IMAGE (fileno) & ".hex");
 BEGIN
 FOR i IN 0 TO blocksize-1 LOOP
 HWRITE (memline, buffermem (i));
 WRITELINE (f, memline);
 END LOOP;
 FILE_CLOSE (f);
 END updatefile;

Figure 10.24 Memory File Handling

Computer Hardware and Software 427

10.3.7 Sorting Test Program

As an example program for our processor core, Figure 10.25 shows a
sorting program for SAYEH. This program reads data starting from
the CPU memory and sorts them in descending order. The number of
data item to sort is in location 768 and data begins in the next mem-
ory location. This sorting program uses two loops for the sorting to be
done. When completed, the CPU is put into the halt state.

0000 mil r0 00 :r0=768 starting address in memory
0001 mih r0 03 :
0002 lda r1 r0 :r1= total number of elements
0003 awp 5 :
0004 mil r0 01 :r5=1 for adding with index each time
0005 mih r0 00 :
0006 cwp :
0006 add r1 r0 :r1= limit for final r4
0007 mvr r2 r1 :
0008 awp 2 :
0009 sub r0 r3 :r2= limit for index r3
0009 cwp :
000A mvr r3 r0 :r3= outer index
000A nop :
000B cwp :
000B cmp r3 r2 : the outer index is equal to its limit
000C brz 19 : branch to 0025 if zero
000D awp 3 :
000E add r0 r2 :r3=r3+1 increment outer index
000E mvr r1 r0 :r4=r3 set inner index to outer as init
000F cwp :
0010 awp 1 :
0011 cmp r3 r0 : check if inner index reaches its limit
0012 brz 10 : branch to 0022 if zero
0013 awp 2 :
0014 lda r3 r0 :r6=(r3)
0015 awp 1 :
0016 add r0 r1 :r4=r4+r5 increment inner index
0016 lda r3 r0 :r7=(r4)
0017 cmp r2 r3 : check if r6 is greater than r7
0018 brc 07 : branch to 001F if carry
0019 lda r1 r0 :r5=(r4) r5 as an temporary register
0019 sta r0 r2 :(r4)=r6
001A cwp :
001B awp 3 :
001C sta r0 r2 :(r3)=r5
001D mil r2 01 :
001E mih r2 00 :r5=1 for adding with index each time
001F cwp :
0020 awp 5 :
0021 jpa r0 0E : jump to 000F
0022 cwp :
0023 awp 5 :
0024 jpa r0 0A : jump to 000B
0025 hlt :

Figure 10.25 Sorting Program for SAYEH

428 Chapter 10

 The program shown in Figure 10.25 is translated into its hexa-
decimal equivalent and is put in buffermem memory variable. When
completed, memX.hex files, where X is the memory page number, are
created. These files represent memory pages affected by the program.

10.4 SAYEH as an Embedded Processor Core
This section shows an FIR filter design using our SAYEH processor
as an embedded core. We will discuss the general strategy of a core-
based design, filer requirements, our core based architecture, and our
filter implementation.

10.4.1 Embedded Core Based Design
An embedded system based on a processor core has a hardware part
and a program. The hardware is the architecture of the systems run-
ning the software program for the specific application the embedded
design is targeted for. The hardware of an embedded system consists
of a processor core, interfaces, IO devices, memory, and the necessary
bussing. An embedded system development environment usually has
a compiler for compiling an application program into the processor
core’s machine language.

An embedded system designer decides on the hardware architec-
ture for the specific application, and develops the software program
for it. The design is completed by putting the hardware and the soft-
ware together. Figure 10.26 shows an outline of an embedded core
based design. We will follow this outline for generation our example
system.

Figure 10.26 Hardware Function Implemented by Embedded Processor

Computer Hardware and Software 429

10.4.2 Filter Design
The example we will use for implementing with our SAYEH core is an
FIR filter. An FIR filter has a set of coefficients that are taken from
its impulse response of a filter as shown in Figure 10.27. These coeffi-
cients are the main factors in filter design.

Figure 10.27 Filter Coefficient

Data into the filter are multiplied and accumulated as shown in
the RT level implementation of the FIR filter in Figure 10.28. As
shown in Figure 10.27, the filter we are designing is a 4th order FIR
filter with five coefficients. The RTL implementation of the filter also
shows the five coefficients. As shown, a series of registers provide de-
layed inputs that are multiplied by ci coefficients and then added to-
gether to generate the output. The clock frequency for the registers
must the same as the sampling frequency that is twice the largest
frequency of the input signal.

Figure 10.28 RTL FIR Filter

 The hardware shown in Figure 10.28 is an iterative hardware
and can be described using VHDL generate statements. This hard-
ware can easily be implemented using registers, adders and multipli-
ers. Of all these parts, the multipliers are the most complex and take
more hardware than the other components.

430 Chapter 10

10.4.3 Core Based Architecture
The algorithm presented in the RTL implementation of the filter can
be implemented with a processor running the iterative add and mul-
tiply procedure. The architecture of this hardware is shown in Figure
10.29.

The SAYEH processor we are using for our embedded processor
is available in behavioral pre-synthesis VHDL. We will use memory
mapped I/O for its interfacing to keep its bussing structure simple.
The filter program will be written in C, and we will show a hand
translation of it into SAYEH Assembly Language.

Figure 10.29 Processor Core for FIR Implementation

The data memory of the implementation of Figure 10.29 has a section
for storing coefficients and another section for storing sampled data.
We assume that sampled data have been sampled and collected using
a valid sampling rate for the input signal.
 The program memory of the processor has a program that reads
a new sample data performs shifting and five multiply and add opera-
tions, one for each coefficient of the filter. With each data read, the
program outputs a new data for the circuit response.

10.4.4 FIR Program
Using the architecture discussed above, the implementation of the
FIR filter will be completed by developing a program to load into the
program memory of Figure 10.29. This program must be in SAYEH
assembly language to use proper IO and memory addresses.

We will start with a C program to show the general operation of
this filter, and then hand compile it into SAYEH machine language.
This program shown in Figure 10.30 reads data, multiplies them by
all coefficients and outputs the result.

Computer Hardware and Software 431

01: #include <iostream.h>
02: #include <fstream.h>
03: #include <stdlib.h>
04: #include <stdio.h>
05: #include <string.h>
06:
07: int main ()
08: {
09: int history[16] = {0};
10: int i, j, n;
11: int temp;
12: int out[64] = {0};
13: int newInput, inputHigh, inputLow;
14: int newCoeff, coeffHigh, coeffLow;
15: int filterDegree, inputNo;
16: FILE * input;
17: FILE * coeff;
18: FILE * parameter;
19: FILE * output;
20: input = fopen("Input.bin","r");
21: parameter = fopen("Parameter.bin", "r");
22: output = fopen("Output.txt", "w");
23: filterDegree = fgetc(parameter);
24: inputNo = fgetc(parameter);
25: fclose(parameter);
26: for (n = 0; n<inputNo; n++) {
27: for (i = filterDegree-1; i>=0; --i) {
28: history[i+1] = history[i];
29: }
30: inputHigh = fgetc(input);
31: inputLow = fgetc(input);
32: inputHigh = inputHigh << 8;
33: newInput = inputHigh | inputLow;
34: history[0] = newInput;
35: temp = 0;
36: coeff = fopen("Coeff.bin","r");
37: for (j = 0; j<filterDegree ; ++j) {
38: coeffHigh = fgetc(coeff);
39: coeffLow = fgetc(coeff);
40: coeffHigh = coeffHigh << 8;
41: newCoeff = coeffHigh | coeffLow;
42: temp += history[j]*newCoeff;
43: }
44: fclose(coeff);
45: out[n] = temp;
46: fprintf(output,"%p\n", out[n]);
47: }
48: fclose(input);
49: fclose(output);
50: return 0;
51: }

Figure 10.30 FIR Filter C code

432 Chapter 10

 The program shown begins with header files and declarations.
Following this part, it opens input, parameter and output files (lines
16 to 19). The input file is where sampled data are stored, and output
is where result will be stored. The parameter file is where filter de-
gree, and number of input samples are stored.

The loop that begins on line 26 and ends on line 47 (line numbers
are shown in bold) reads data inputs calculates result and outputs
data to the output file on line 46.

The loop that begins on line 37 and ends on line 43 performs
multiplying data by filter coefficients and adding them as many times
as there are coefficients. The result is collected in temp.
 Note in this code that shifting of data that are multiplied (lines
32 and 40) results in using their eight most significant bits. This is
done so that we will not require 16-bit multiplications in our imple-
mentation of this routine, which makes this C code conforms to the
processor that we will be using for the implementation of this design.
The processor we will use can only do 8-bit multiplications, which re-
sults in low accuracy of our filter design. This is a compromise we had
to make to keep our design simple.

10.4.5 FIR Memory and IO Maps
The next step in design of our embedded system is structuring mem-
ory and I/O of the processor and design of the CPU external busses.
For a large system with many I/O devices and memory hierarchies
this step involves design of address logic, I/O handshaking, arbitra-
tion, interrupt setting, priority encoding, etc. However, our system is
much simpler than this.
 Our embedded system needs a data memory for reading filter
parameters, data input, filter coefficients, and writing filter outputs.
In addition, the system needs an instruction memory for storing the
filtering program to be read by the processor.
 The bussing structure of our system only consists of processor
data bus, address bus, and decoding logic for addressing these mem-
ory blocks. Our instruction memory begins at address 0000, and the
data memory begins at 0100. We use a clocked memory for the in-
struction memory, and fast signal cycle asynchronous RAM for the
data memory. Figure 10.32 shows the bussing structure of our em-
bedded system.
 The decoder and read/write logic shown in Figure 10.31 has
AND/OR logic for address decoding and issuing read/write signals.
The select logic blocks in this figure are for connection of the bidirec-
tional SAYEH data bus to the data busses of the data memory and
instruction memory.

Computer Hardware and Software 433

Figure 10.31 Embedded System Bus Structure

10.4.6 Filter Software
The last step in the design of our FIR filter example is the develop-
ment of its software. The algorithm for this software is that of Figure
10.30, the hardware structure that this software will be implemented
in is shown in Figure 10.31, and the processor that the software runs
on is SAYEH. In an automated environment, compiling the C pro-
gram of Figure 10.30 with consideration of memory mappings, would
be all that we needed to do for this step of the design. In our case,
however, we have to develop our software in SAYEH assembly code.
 Considering the memory structure of Figure 10.31 and require-
ments of our algorithm (Figure 10.30) as to filter parameters, data
and coefficients, we decide on the memory mapping shown in Figure
10.32.
 The filter program in SAYEH assembly is developed based on the
memory map of Figure 10.32. We first read locations 0100 and 0101
for the degree of the filter and the number of input samples. Then
each data sample that is read starting in 0140, is multiplied by its
corresponding coefficient that being in 0130, stored in locations 0120
to 012f and added to previous data in these same locations. For each

434 Chapter 10

data read, an output is generated that is written starting in location
0180. Filter code in SAYEH assembly is shown in Figure 10.33.

Figure 10.32 Filter Memory Map

 The assembly code shown in this figure is translated to SAYEH
machine language and becomes available for it to be loaded into the
program memory (Figure 10.29). The task of assembly can be done
manually, using the VHDL testbench assembler program of Section
10.3, or by writing an assembler for SAYEH.

Computer Hardware and Software 435

Figure 10.33 Filter Program Assembly Code

10.5 Summary
This chapter showed design and test of an example processor core
that we referred to as SAYEH. We then used this processor core for
the implementation of an FIR filter. In the design phase, we used RT
level design strategy that we discussed in Chapter 8. Component
structures and coding styles were also presented there. Specifically,

436 Chapter 10

the design strategy used for SAYEH was the same as that of the
small adding processor of Chapter 8. For testing our SAYEH proces-
sor, we used test schemes of Chapter 8. Specifically, the test method-
ology used for the adding machine was also used for SAYEH. The FIR
filter showed an application of SAYEH and it demonstrated how a
processor core can be used for implementing a hardware function.
This chapter demonstrated design, test and application of processor
cores.

Problems
10.1 SAYEH multiplication uses two 16-bit words and ignores the
most-significant 8 bits of its two operands. We can correct this by de-
veloping a multiplier that uses an array multiplier that multiplies
two 16-bit operands and generates its 32-bit output as two 16-bit re-
sults. You are to develop such a multiplier and interface it with
Sayeh. A) Using an instantiation of a combinational array multiplier
(assume this is given) that multiplies two 16-bit operands and gener-
ates a 32-bit result, write a multiplier that when it is started it takes
its inputs, and generates its output as two 16-bit results. The multi-
plier is started when a 1 appears on its start input. It generates a
ready signal when the result is ready and when the first half of the
result is available on its output. For it to put the second half of the
result on its output its next input should be asserted. When this hap-
pens, ready becomes 0 and when the second half is ready it (the mul-
tiplier) asserts ready again. Write this code completely independent of
Sayeh and make sure its handshaking is appropriate for SAYEH to
communicate with. You can change its handshaking as long as you
follow it in Part B that deals with Sayeh controller. Also, write this
unit such that if it is operated by a slower clock, or if it uses a sequen-
tial multiplier, it can still be used with Sayeh. B) Modify the control-
ler of Sayeh such that when multiplication is to be done, it starts the
multiplier of Part A and waits for the outputs of the multiplier to be-
come ready. The controller should then take one 16-bit output and
put it in RD and take the next one and put it in RD+1.

10.2 Write a testbench for the multiplier of Part A of Problem 1.
This testbench reads data1.dat and data2.dat files, applies 16-bit
data read from the two files to the operands of the multiplier and
writes the operands and the two results in the results.dat file. Fur-
thermore, when a 32-bit result becomes ready, the testbench calcu-
lates its own multiplication result by using the * operator, and com-
pares this result with what the multiplier is generating. If a mis-

Computer Hardware and Software 437

match happens, the testbench issues an error message using an as-
sert statement. The testbench communicates with the multiplier us-
ing its handshaking signals. All data in the data files are in binary,
and the testbench should continue reading the input files for as ling
as there are new data in the files. It is expected that two input files
have equal number of test data in them.

10.3 This chapter used SAYEH for the implementation of an FIR
filer. This processor is a general purpose processor and many of its
instructions were not used for the filter implementation. In some
places, other instructions that SAYEH lacks could make the imple-
mentation of the filter easier. In this problem you are to design a
processor specifically for filter design. Start the design of your filer
processor by taking SAYEH and removing instructions and structures
that are not needed (perhaps like the shadowing capability). Then
add capabilities (perhaps a better multiplication) that are needed for
filers. Complete your design, simulate it and write programs for de-
sign of several filters, including the simple FIR filter that we pre-
sented.

Suggested Reading
Accellera, Open Verification Library: Assertion Monitor Reference

Manual, www.accellera.org, v1.0, 2005.
Baker, Louis, VHDL Programming: With Advanced Topics, 1992,

Wiley Professional Computing, John Wiley & Sons Inc, ISBN: 978-
0792390305.

Bening, Lionel and Harry D. Foster, Principles of Verifiable RTL De-
sign Second Edition - A Functional Coding Style Supporting Veri-
fication Processes in Verilog, Springer, 2nd edition, 2001, ISBN:
0792373685.

Chu, Pong, RTL Hardware Design Using VHDL: Coding for Effi-
ciency, Portability, and Scalability, 2006, Wiley-IEEE Press,
ISBN: 0471720925.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference
Manual, SH94983-TBR (print) SS94983-TBR (electronic), ISBN 0-
7381-3247-0 (print) 0-7381-3248-9 (electronic), 2002.

IEEE Std 1076.6-2004, IEEE Standard for VHDL Register Transfer
Level (RTL) Synthesis, SH95242 (print) SS95242 (electronic),
ISBN 0-7381-4064-3 (print) 0-7381-4065-1 (electronic), 2004.

Lipsett, Roger, and Cary Ussery, VHDL hardware description and
Design, 1st edition, 2001, Springer, ISBN: 978-0792390305.

www.accellera.org

438 Chapter 10

Navabi, Zainalabedin, Verilog Digital System Design: Register Trans-
fer Level Synthesis, Testbench, and Verification, 2006, McGraw
Hill-Professional, ISBN: 0070144564-1.

Patterson, D.A., J.L. Hennessy, P.J. Ashenden, et al., Computer Or-
ganization and Design: The Hardware/Software Interface, Third
Edition, Morgan Kaufmann, San Francisco, 2004, ISBN:
1558606041.

Perry, Douglas L., VHDL: Programming By Example, 4th edition,
2002, McGraw-Hill Professional, ISBN: 978-0071400701.

Perry, Douglas L., and Harry Foster, Applied Formal Verification for
Digital Circuit Design, 2005, McGraw-Hill Professional, ISBN:
978-0071443722.

439

A VHDL Keywords

A complete list of VHDL keywords is shown here. This information
may be useful for selection of names, and for reading VHDL codes.

ABS
ACCESS
AFTER
ALIAS
ALL
AND
ARCHITECTURE
ARRAY
ASSERT
ATTRIBUTE
BEGIN
BLOCK
BODY
BUFFER
BUS
CASE
COMPONENT
CONFIGURATION
CONSTANT
DISCONNECT
DOWNTO
ELSE
ELSIF

END
ENTITY
EXIT
FILE
FOR
FUNCTION
GENERATE
GENERIC
GROUP
GUARDED
IF
IMPURE
IN
INERTIAL
INOUT
IS
LABEL
LIBRARY
LINKAGE
LITERAL
LOOP
MAP
MOD

NAND
NEW
NEXT
NOR
NOT
NULL
OF
ON
OPEN
OR
OTHERS
OUT
PACKAGE
PORT
POSTPONED
PROCEDURE
PROCESS
PROTECTED
PURE
RANGE
RECORD
REGISTER
REJECT

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

440 Appendix A

REM
REPORT
RETURN
ROL
ROR
SELECT
SEVERITY
SHARED
SIGNAL
SLA

SLL
SRA
SRL
SUBTYPE
THEN
TO
TRANSPORT
TYPE
UNAFFECTED
UNITS

UNTIL
USE
VARIABLE
WAIT
WHEN
WHILE
WITH
XNOR
XOR

441

B VHDL Language Grammar

This appendix contains the formal Grammar of the standard
ANSI/IEEE Std 1076-2002 VHDL language in BNF format. In this
format, productions are on the left hand side of an equivalence, two
colons and an equal sign are used for equivalence, vertical bars for
oring, square brackets for optional parts, and curly brackets for parts
that zero or more of them may be used. Language keywords and re-
served words are in bold type. Language productions are ordered in
alphabetical order.

abstract_literal ::= decimal_literal | based_literal

access_type_definition ::= access subtype_indication

actual_designator ::=
 expression
| signal_name
| variable_name
| file_name
| open

actual_parameter_part ::= parameter_association_list

actual_part ::=
 actual_designator
| function_name (actual_designator)
| type_mark (actual_designator)

adding_operator ::= + | – | &

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

442 Appendix B

aggregate ::=
(element_association { , element_association })

alias_declaration ::=
alias alias_designator [: subtype_indication] is name [signature] ;

alias_designator ::= identifier | character_literal | operator_symbol

allocator ::=
 new subtype_indication
| new qualified_expression

architecture_body ::=
architecture identifier of entity_name is

architecture_declarative_part
begin

architecture_statement_part
end [architecture] [architecture_simple_name] ;

architecture_declarative_part ::=
{ block_declarative_item }

architecture_statement_part ::=
{ concurrent_statement }

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

assertion ::=
assert condition

[report expression]
[severity expression]

assertion_statement ::= [label :] assertion ;

association_element ::=
[formal_part =>] actual_part

association_list ::=
association_element { , association_element }

attribute_declaration ::=
attribute identifier : type_mark ;

attribute_designator ::= attribute_simple_name

attribute_name ::=
prefix [signature] ' attribute_designator [(expression)]

VHDL Language Grammar 443

attribute_specification ::=
attribute attribute_designator of entity_specification is expression ;

base ::= integer

base_specifier ::= B | O | X

based_integer ::=
extended_digit { [underline] extended_digit }

based_literal ::=
base # based_integer [. based_integer] # [exponent]

basic_character ::=
basic_graphic_character | format_effector

basic_graphic_character ::=
upper_case_letter | digit | special_character | space_character

basic_identifier ::= letter { [underline] letter_or_digit }

binding_indication ::=
[use entity_aspect]
[generic_map_aspect]
[port_map_aspect]

bit_string_literal ::= base_specifier " [bit_value] "

bit_value ::= extended_digit { [underline] extended_digit }

block_configuration ::=
for block_specification

{ use_clause }
{ configuration_item }

end for ;

block_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| configuration_specification

444 Appendix B

| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

block_declarative_part ::=
{ block_declarative_item }

block_header ::=
[generic_clause
[generic_map_aspect ;]]
[port_clause
[port_map_aspect ;]]

block_specification ::=
 architecture_name
| block_statement_label
| generate_statement_label [(index_specification)]

block_statement ::=
block_label :

block [(guard_expression)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block [block_label] ;

block_statement_part ::=
{ concurrent_statement }

case_statement ::=
[case_label :]

case expression is
case_statement_alternative
{ case_statement_alternative }

end case [case_label] ;

case_statement_alternative ::=
when choices =>

sequence_of_statements

character_literal ::= ' graphic_character '

choice ::=
 simple_expression
| discrete_range
| element_simple_name
| others

VHDL Language Grammar 445

choices ::= choice { | choice }

component_configuration ::=
for component_specification

[binding_indication ;]
[block_configuration]

end for ;

component_declaration ::=
component identifier [is]

[local_generic_clause]
[local_port_clause]

end component [component_simple_name] ;

component_instantiation_statement ::=
instantiation_label :

instantiated_unit
[generic_map_aspect]
[port_map_aspect] ;

component_specification ::=
instantiation_list : component_name

composite_type_definition ::=
 array_type_definition
| record_type_definition

concurrent_assertion_statement ::=
[label :] [postponed] assertion ;

concurrent_procedure_call_statement ::=
[label :] [postponed] procedure_call ;

concurrent_signal_assignment_statement ::=
 [label :] [postponed] conditional_signal_assignment
| [label :] [postponed] selected_signal_assignment

concurrent_statement ::=
 block_statement
| process_statement
| concurrent_procedure_call_statement
| concurrent_assertion_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement
| generate_statement

condition ::= boolean_expression

condition_clause ::= until condition

446 Appendix B

conditional_signal_assignment ::=
target <= options conditional_waveforms ;

conditional_waveforms ::=
{ waveform when condition else }
 waveform [when condition]

configuration_declaration ::=
configuration identifier of entity_name is

configuration_declarative_part
block_configuration

end [configuration] [configuration_simple_name] ;

configuration_declarative_item ::=
 use_clause
| attribute_specification
| group_declaration

configuration_declarative_part ::=
{ configuration_declarative_item }

configuration_item ::=
 block_configuration
| component_configuration

configuration_specification ::=
for component_specification binding_indication ;

constant_declaration ::=
constant identifier_list : subtype_indication [:= expression] ;

constrained_array_definition ::=
array index_constraint of element_subtype_indication

constraint ::=
 range_constraint
| index_constraint

context_clause ::= { context_item }

context_item ::=
 library_clause
| use_clause

decimal_literal ::= integer [. integer] [exponent]

declaration ::=
 type_declaration
| subtype_declaration
| object_declaration

VHDL Language Grammar 447

| interface_declaration
| alias_declaration
| attribute_declaration
| component_declaration
| group_template_declaration
| group_declaration
| entity_declaration
| configuration_declaration
| subprogram_declaration
| package_declaration
| primary_unit
| architecture_body

delay_mechanism ::=
 transport
| [reject time_expression] inertial

design_file ::= design_unit { design_unit }

design_unit ::= context_clause library_unit

designator ::= identifier | operator_symbol

direction ::= to | downto

disconnection_specification ::=
disconnect guarded_signal_specification after time_expression ;

discrete_range ::= discrete_subtype_indication | range

element_association ::=
[choices =>] expression

element_declaration ::=
identifier_list : element_subtype_definition ;

element_subtype_definition ::= subtype_indication

entity_aspect ::=
 entity entity_name [(architecture_identifier)]
| configuration configuration_name
| open

entity_class ::=
 entity | architecture | configuration
| procedure | function | package
| type | subtype | constant
| signal | variable | component
| label | literal | units

448 Appendix B

entity_class_entry ::= entity_class [<>]

entity_class_entry_list ::=
entity_class_entry { , entity_class_entry }

entity_declaration ::=
entity identifier is

entity_header
entity_declarative_part

[begin
entity_statement_part]

end [entity] [entity_simple_name] ;

entity_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

entity_declarative_part ::=
{ entity_declarative_item }

entity_designator ::= entity_tag [signature]

entity_header ::=
[formal_generic_clause]
[formal_port_clause]

entity_name_list ::=
 entity_designator { , entity_designator }
| others
| all

entity_specification ::=
entity_name_list : entity_class

entity_statement ::=
 concurrent_assertion_statement
| passive_concurrent_procedure_call
| passive_process_statement

VHDL Language Grammar 449

entity_statement_part ::=
{ entity_statement }

entity_tag ::= simple_name | character_literal | operator_symbol

enumeration_literal ::= identifier | character_literal

enumeration_type_definition ::=
(enumeration_literal { , enumeration_literal })

exit_statement ::=
[label :] exit [loop_label] [when condition] ;

exponent ::= E [+] integer | E – integer

expression ::=
 relation { and relation }
| relation { or relation }
| relation { xor relation }
| relation [nand relation]
| relation [nor relation]
| relation { xnor relation }

extended_digit ::= digit | letter

extended_identifier ::= \ graphic_character { graphic_character } \

factor ::=
 primary [** primary]
| abs primary
| not primary

file_declaration ::=
file identifier_list : subtype_indication [file_open_information] ;

file_logical_name ::= string_expression

file_open_information ::=
[open file_open_kind_expression] is file_logical_name

file_type_definition ::=
file of type_mark

floating_type_definition ::= range_constraint

formal_designator ::=
 generic_name
| port_name
| parameter_name

450 Appendix B

formal_parameter_list ::= parameter_interface_list

formal_part ::=
 formal_designator
| function_name (formal_designator)
| type_mark (formal_designator)

full_type_declaration ::=
type identifier is type_definition ;

function_call ::=
function_name [(actual_parameter_part)]

generate_statement ::=
generate_label :

generation_scheme generate
[{ block_declarative_item }

begin]
{ concurrent_statement }

end generate [generate_label] ;

generation_scheme ::=
 for generate_parameter_specification
| if condition

generic_clause ::=
generic (generic_list) ;

generic_list ::= generic_interface_list

generic_map_aspect ::=
generic map (generic_association_list)

graphic_character ::=
basic_graphic_character | lower_case_letter |
other_special_character

group_constituent ::= name | character_literal

group_constituent_list ::= group_constituent { , group_constituent }

group_declaration ::=
group identifier : group_template_name (group_constituent_list) ;

group_template_declaration ::=
group identifier is (entity_class_entry_list) ;

guarded_signal_specification ::=
guarded_signal_list : type_mark

VHDL Language Grammar 451

identifier ::= basic_identifier | extended_identifier

identifier_list ::= identifier { , identifier }

if_statement ::=
[if_label :]

if condition then
sequence_of_statements

{ elsif condition then
sequence_of_statements }

[else
sequence_of_statements]

end if [if_label] ;

incomplete_type_declaration ::= type identifier ;

index_constraint ::= (discrete_range { , discrete_range })

index_specification ::=
 discrete_range
| static_expression

index_subtype_definition ::= type_mark range <>

indexed_name ::= prefix (expression { , expression })

instantiated_unit ::=
 [component] component_name
| entity entity_name [(architecture_identifier)]
| configuration configuration_name

instantiation_list ::=
 instantiation_label { , instantiation_label }
| others
| all

integer ::= digit { [underline] digit }

integer_type_definition ::= range_constraint

interface_constant_declaration ::=
[constant] identifier_list : [in] subtype_indication
[:= static_expression]

interface_declaration ::=
 interface_constant_declaration
| interface_signal_declaration
| interface_variable_declaration
| interface_file_declaration

452 Appendix B

interface_element ::= interface_declaration

interface_file_declaration ::=
file identifier_list : subtype_indication

interface_list ::=
interface_element { ; interface_element }

interface_signal_declaration ::=
[signal] identifier_list : [mode] subtype_indication [bus]
[:= static_expression]

interface_variable_declaration ::=
[variable] identifier_list : [mode] subtype_indication
[:= static_expression]

iteration_scheme ::=
 while condition
| for loop_parameter_specification

label ::= identifier

letter ::= upper_case_letter | lower_case_letter

letter_or_digit ::= letter | digit

library_clause ::= library logical_name_list ;

library_unit ::=
 primary_unit
| secondary_unit

literal ::=
 numeric_literal
| enumeration_literal
| string_literal
| bit_string_literal
| null

logical_name ::= identifier

logical_name_list ::= logical_name { , logical_name }

logical_operator ::= and | or | nand | nor | xor | xnor

loop_statement ::=
[loop_label :]

[iteration_scheme] loop
sequence_of_statements

end loop [loop_label] ;

VHDL Language Grammar 453

miscellaneous_operator ::= ** | abs | not

mode ::= in | out | inout | buffer | linkage

multiplying_operator ::= * | / | mod | rem

name ::=
 simple_name
| operator_symbol
| selected_name
| indexed_name
| slice_name
| attribute_name

next_statement ::=
[label :] next [loop_label] [when condition] ;

null_statement ::= [label :] null ;

numeric_literal ::=
 abstract_literal
| physical_literal

object_declaration ::=
 constant_declaration
| signal_declaration
| variable_declaration
| file_declaration

operator_symbol ::= string_literal

options ::= [guarded] [delay_mechanism]

package_body ::=
package body package_simple_name is

package_body_declarative_part
end [package body] [package_simple_name] ;

package_body_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| use_clause
| group_template_declaration
| group_declaration

454 Appendix B

package_body_declarative_part ::=
{ package_body_declarative_item }

package_declaration ::=
package identifier is

package_declarative_part
end [package] [package_simple_name] ;

package_declarative_item ::=
 subprogram_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

package_declarative_part ::=
{ package_declarative_item }

parameter_specification ::=
identifier in discrete_range

physical_literal ::= [abstract_literal] unit_name

physical_type_definition ::=
range_constraint

units
primary_unit_declaration
{ secondary_unit_declaration }

end units [physical_type_simple_name]

port_clause ::=
port (port_list) ;

port_list ::= port_interface_list

port_map_aspect ::=
port map (port_association_list)

VHDL Language Grammar 455

prefix ::=
 name
| function_call

primary ::=
 name
| literal
| aggregate
| function_call
| qualified_expression
| type_conversion
| allocator
| (expression)

primary_unit ::=
 entity_declaration
| configuration_declaration
| package_declaration

primary_unit_declaration ::= identifier ;

procedure_call ::= procedure_name [(actual_parameter_part)]

procedure_call_statement ::= [label :] procedure_call ;

process_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration

process_declarative_part ::=
{ process_declarative_item }

process_statement ::=
[process_label :]

[postponed] process [(sensitivity_list)] [is]
process_declarative_part

begin
process_statement_part

end [postponed] process [process_label] ;

456 Appendix B

process_statement_part ::=
{ sequential_statement }

protected_type_body ::=
protected body

protected_type_body_declarative_part
end protected body [protected_type_simple name]

protected_type_body_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration

protected_type_body_declarative_part ::=
{ protected_type_body_declarative_item }

protected_type_declaration ::=
protected

protected_type_declarative_part
end protected [protected_type_simple_name]

protected_type_declarative_item ::=
 subprogram_specification
| attribute_specification
| use_clause

protected_type_declarative_part ::=
{ protected_type_declarative_item }

protected_type_definition ::=
 protected_type_declaration
| protected_type_body

qualified_expression ::=
 type_mark ' (expression)
| type_mark ' aggregate

range ::=
 range_attribute_name
| simple_expression direction simple_expression

VHDL Language Grammar 457

range_constraint ::= range range

record_type_definition ::=
record

 element_declaration
{ element_declaration }

end record [record_type_simple_name]

relation ::=
shift_expression [relational_operator shift_expression]

relational_operator ::= = | /= | < | <= | > | >=

report_statement ::=
[label :]

report expression
[severity expression] ;

return_statement ::=
[label :] return [expression] ;

scalar_type_definition ::=
 enumeration_type_definition | integer_type_definition
| floating_type_definition | physical_type_definition

secondary_unit ::=
 architecture_body
| package_body

secondary_unit_declaration ::= identifier = physical_literal ;

selected_name ::= prefix . suffix

selected_signal_assignment ::=
with expression select

target <= options selected_waveforms ;

selected_waveforms ::=
{ waveform when choices , }
 waveform when choices

sensitivity_clause ::= on sensitivity_list

sensitivity_list ::= signal_name { , signal_name }

sequence_of_statements ::=
{ sequential_statement }

458 Appendix B

sequential_statement ::=
 wait_statement
| assertion_statement
| report_statement
| signal_assignment_statement
| variable_assignment_statement
| procedure_call_statement
| if_statement
| case_statement
| loop_statement
| next_statement
| exit_statement
| return_statement
| null_statement

shift_expression ::=
simple_expression [shift_operator simple_expression]

shift_operator ::= sll | srl | sla | sra | rol | ror

sign ::= + | –

signal_assignment_statement ::=
[label :] target <= [delay_mechanism] waveform ;

signal_declaration ::=
signal identifier_list : subtype_indication [signal_kind]
[:= expression] ;

signal_kind ::= register | bus

signal_list ::=
 signal_name { , signal_name }
| others
| all

signature ::= [[type_mark { , type_mark }] [return type_mark]]

simple_expression ::=
[sign] term { adding_operator term }

simple_name ::= identifier

slice_name ::= prefix (discrete_range)

string_literal ::= “{ graphic_character } “ "

subprogram_body ::=
subprogram_specification is

subprogram_declarative_part

VHDL Language Grammar 459

begin
subprogram_statement_part

end [subprogram_kind] [designator] ;

subprogram_declaration ::=
subprogram_specification ;

subprogram_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration

subprogram_declarative_part ::=
{ subprogram_declarative_item }

subprogram_kind ::= procedure | function

subprogram_specification ::=
 procedure designator [(formal_parameter_list)]
| [pure | impure] function designator [(formal_parameter_list)
]

return type_mark
subprogram_statement_part ::=

{ sequential_statement }

subtype_declaration ::=
subtype identifier is subtype_indication ;

subtype_indication ::=
[resolution_function_name] type_mark [constraint]

suffix ::=
 simple_name
| character_literal
| operator_symbol
| all

target ::=
 name
| aggregate

460 Appendix B

term ::=
factor { multiplying_operator factor }

timeout_clause ::= for time_expression

type_conversion ::= type_mark (expression)

type_declaration ::=
 full_type_declaration
| incomplete_type_declaration

type_definition ::=
 scalar_type_definition
| composite_type_definition
| access_type_definition
| file_type_definition
| protected_type_definition

type_mark ::=
 type_name
| subtype_name

unconstrained_array_definition ::=
array (index_subtype_definition { , index_subtype_definition })

of element_subtype_indication

use_clause ::=
use selected_name { , selected_name } ;

variable_assignment_statement ::=
[label :] target := expression ;

variable_declaration ::=
[shared] variable identifier_list : subtype_indication
[:= expression] ;

wait_statement ::=
[label :] wait [sensitivity_clause] [condition_clause]
[timeout_clause] ;

waveform ::=
 waveform_element { , waveform_element }
| unaffected

waveform_element ::=
 value_expression [after time_expression]
| null [after time_expression]

461

C VHDL Standard Packages

This appendix presents the standard VHDL packages. Section C.1
presents the STANDARD package, and Section C.2 presents the
TEXTIO package. In all descriptions of this book, we assumed that all
types and functions of the STANDARD package are visible, but the
TEXTIO package had to be explicitly declared when needed.

C.1 STANDARD Package
The STANDARD package defines primitive types, subtypes and func-
tions. This package resides in the STD library.

-- This is Package STANDARD as defined in the VHDL 1992
-- Language Reference Manual.
--
-- NOTE: VCOM and VSIM will not work properly if these
-- declarations are modified.

-- Version information: @(#)standard.vhd

package standard is
 type boolean is (false,true);
 type bit is ('0', '1');
 type character is (
 nul, soh, stx, etx, eot, enq, ack, bel,
 bs, ht, lf, vt, ff, cr, so, si,
 dle, dc1, dc2, dc3, dc4, nak, syn, etb,
 can, em, sub, esc, fsp, gsp, rsp, usp,

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

462 Appendix C

 ' ', '!', '"', '#', '$', '%', '&', ''',
 '(', ')', '*', '+', ',', '-', '.', '/',
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', ':', ';', '<', '=', '>', '?',

 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
 'X', 'Y', 'Z', '[', '\', ']', '^', '_',

 '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
 'x', 'y', 'z', '{', '|', '}', '~', del,

 c128, c129, c130, c131, c132, c133, c134, c135,
 c136, c137, c138, c139, c140, c141, c142, c143,
 c144, c145, c146, c147, c148, c149, c150, c151,
 c152, c153, c154, c155, c156, c157, c158, c159,

 -- the character code for 160 is there (NBSP),
 -- but prints as no char

 ' ', '¡', '¢', '£', '¤', '¥', '¦', '§',
 '¨', '©', 'ª', '«', '¬', '-', '®', '¯',
 '°', '±', '²', '³', '´', 'µ', '¶', '·',
 '¸', '¹', 'º', '»', '¼', '½', '¾', '¿',

 'À', 'Á', 'Â', 'Ã', 'Ä', 'Å', 'Æ', 'Ç',
 'È', 'É', 'Ê', 'Ë', 'Ì', 'Í', 'Î', 'Ï',
 'Ð', 'Ñ', 'Ò', 'Ó', 'Ô', 'Õ', 'Ö', '×',
 'Ø', 'Ù', 'Ú', 'Û', 'Ü', 'Ý', 'Þ', 'ß',

 'à', 'á', 'â', 'ã', 'ä', 'å', 'æ', 'ç',
 'è', 'é', 'ê', 'ë', 'ì', 'í', 'î', 'ï',
 'ð', 'ñ', 'ò', 'ó', 'ô', 'õ', 'ö', '÷',
 'ø', 'ù', 'ú', 'û', 'ü', 'ý', 'þ', 'ÿ');

 type severity_level is (note, warning, error, failure);
 type integer is range -2147483648 to 2147483647;
 type real is range -1.0E308 to 1.0E308;

 type time is range -2147483647 to 2147483647
 units
 fs;
 ps = 1000 fs;
 ns = 1000 ps;
 us = 1000 ns;
 ms = 1000 us;
 sec = 1000 ms;
 min = 60 sec;
 hr = 60 min;
 end units;

VHDL Standard Packages 463

 subtype delay_length is time range 0 fs to time'high;
 impure function now return delay_length;
 subtype natural is integer range 0 to integer'high;
 subtype positive is integer range 1 to integer'high;
 type string is array (positive range <>) of character;
 type bit_vector is array (natural range <>) of bit;
 type file_open_kind is (
 read_mode,
 write_mode,
 append_mode);
 type file_open_status is (
 open_ok,
 status_error,
 name_error,
 mode_error);
 attribute foreign : string;
end standard;

C.2 TEXTIO Package
The TEXTIO package defines types, procedures, and functions for
standard text I/O from ASCII files. This package resides in the STD
library.

-- Package TEXTIO as defined in Chapter 14 of the IEEE
-- Standard VHDL Language Reference Manual (IEEE Std.
-- 1076-1987), as modified by the Issues Screening and
-- Analysis Committee (ISAC), a subcommittee of the VHDL
-- Analysis and Standardization Group (VASG) on 10
-- November, 1988. See "The Sense of the VASG", October,
-- 1989.

-- Version information: %W% %G%

package TEXTIO is

 type LINE is access string;
 type TEXT is file of string;
 type SIDE is (right, left);
 subtype WIDTH is natural;

 -- changed for vhdl92 syntax:
 file input : TEXT open read_mode is "STD_INPUT";
 file output : TEXT open write_mode is "STD_OUTPUT";

 -- changed for vhdl92 syntax (and now a built-in):

464 Appendix C

 procedure READLINE(file f: TEXT; L: out LINE);

 procedure READ(L:inout LINE; VALUE: out bit; GOOD : out
BOOLEAN);

 procedure READ(L:inout LINE; VALUE: out bit);

 procedure READ(L:inout LINE; VALUE: out bit_vector;
GOOD : out BOOLEAN);

 procedure READ(L:inout LINE; VALUE: out bit_vector);

 procedure READ(L:inout LINE; VALUE: out BOOLEAN; GOOD :
out BOOLEAN);

 procedure READ(L:inout LINE; VALUE: out BOOLEAN);

 procedure READ(L:inout LINE; VALUE: out character; GOOD
: out BOOLEAN);

 procedure READ(L:inout LINE; VALUE: out character);

 procedure READ(L:inout LINE; VALUE: out integer; GOOD :
out BOOLEAN);

 procedure READ(L:inout LINE; VALUE: out integer);

 procedure READ(L:inout LINE; VALUE: out real; GOOD :
out BOOLEAN);

 procedure READ(L:inout LINE; VALUE: out real);

 procedure READ(L:inout LINE; VALUE: out string; GOOD :
out BOOLEAN);

 procedure READ(L:inout LINE; VALUE: out string);

 procedure READ(L:inout LINE; VALUE: out time; GOOD :
out BOOLEAN);

 procedure READ(L:inout LINE; VALUE: out time);

 -- changed for vhdl92 syntax (and now a built-in):

VHDL Standard Packages 465

 procedure WRITELINE(file f : TEXT; L : inout LINE);

 procedure WRITE(L : inout LINE; VALUE : in bit;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0);

 procedure WRITE(L : inout LINE; VALUE : in bit_vector;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0);

 procedure WRITE(L : inout LINE; VALUE : in BOOLEAN;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0);

 procedure WRITE(L : inout LINE; VALUE : in character;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0);

 procedure WRITE(L : inout LINE; VALUE : in integer;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0);

 procedure WRITE(L : inout LINE; VALUE : in real;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0;
 DIGITS: in NATURAL := 0);

 procedure WRITE(L : inout LINE; VALUE : in string;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0);

 procedure WRITE(L : inout LINE; VALUE : in time;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0;
 UNIT: in TIME := ns);

 -- is implicit built-in:
 -- function ENDFILE(file F : TEXT) return boolean;

 -- function ENDLINE(variable L : in LINE) return
-- BOOLEAN;

 --
 -- Function ENDLINE as declared cannot be legal VHDL,

466 Appendix C

-- and the entire function was deleted from the
-- definition by the Issues Screening and Analysis
-- Committee (ISAC), a subcommittee of the VHDL
-- Analysis and Standardization Group (VASG) on 10
-- November, 1988. See "The Sense of the VASG",
-- October, 1989, VHDL Issue Number 0032.

end;

467

D STD_LOGIC_1164 Package

This appendix shows the Std_Logic IEEE standard 1164 nine-value
logic package. All designs using this package must use the LIBRARY
IEEE; and USE IEEE.std_logic_1164.ALL; statements for making
this package and its contents accessible.

-- --
--
--
-- Copyright©2004 by the Institute of Electrical and
-- Electronics Engineers, Inc.
-- Three Park Avenue
-- New York, NY 10016-5997, USA
-- All rights reserved.
--
--
-- This document is an unapproved draft of a proposed IEEE
-- Standard. As such, this document is subject to change.
-- USE AT YOUR OWN RISK! Because this is an unapproved
-- draft, this document must not be utilized for any
-- conformance/compliance purposes. Permission is hereby
-- granted for IEEE Standards Committee participants to
-- reproduce this document for purposes of IEEE
-- standardization activities only. Prior to submitting
-- this document to another standards development
-- organization for standardization activities, permission
-- must first be obtained from the Manager, Standards
-- Licensing and Contracts, IEEE Standards Activities
-- Department. Other entities seeking permission to

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

468 Appendix D

-- reproduce this document, in whole or in part, must
-- obtain permission from the Manager, Standards Licensing
-- and Contracts, IEEE Standard Activities Department.
--
-- IEEE Standards Activities Department
-- Standards Licensing and Contracts
-- 445 Hoes Lane, P.O. Box 1331
-- Piscataway, NJ 08855-1331, USA
-- --
--
-- Title : std_logic_1164 multi-value logic system
-- Library : This package shall be compiled into a
-- : library symbolically named IEEE.
-- :
-- Developers: IEEE model standards group (par 1164)
-- Purpose : This packages defines a standard for
-- designers to use in describing the
-- interconnection data types used in vhdl
-- modeling.
-- :
-- Limitation: The logic system defined in this package
-- : may be insufficient for modeling switched
-- : transistors, since such a requirement is
-- : out of the scope of this effort.
-- : Furthermore, mathematics, primitives,
-- : timing standards, etc. are considered
-- : orthogonal issues as it relates to this
-- : package and are therefore beyond the
-- : scope of this effort.
-- :
-- Note : No declarations or definitions shall be
-- : included in, or excluded from this
-- : package. The "package declaration"
-- : defines the types, subtypes and
-- : declarations of std_logic_1164. The
-- : std_logic_1164 package body shall be
-- : considered the formal definition of the
-- : semantics of this package. Tool
-- : developers may choose to implement the
-- : package body in the most efficient manner
-- : available to them.
-- :
-- --
-- modification history :
-- --
-- version | mod. date:|
-- v4.200 | 01/02/92 |
-- --
-- version | mod. date:| Copied from original, and began
-- VHDL-200X
-- v5.000 | 06/22/04 | modifications. David Bishop
-- dbishop@vhdl.org
-- --

STD_LOGIC_1164 Package 469

-- rtl_synthesis off
use std.textio.all;
-- rtl_synthesis on
PACKAGE std_logic_1164 IS

 -- logic state system (unresolved)

 TYPE std_ulogic IS ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't care
);

 -- unconstrained array of std_ulogic for use with the
 -- resolution function

 TYPE std_ulogic_vector IS ARRAY (NATURAL RANGE <>) OF
 std_ulogic;

 -- resolution function

 FUNCTION resolved (s : std_ulogic_vector) RETURN
 std_ulogic;

 -- *** industry standard logic type ***

 SUBTYPE std_logic IS resolved std_ulogic;

 -- unconstrained array of std_logic for use in declaring
 -- signal arrays

 TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) OF
 std_logic;

 -- common subtypes

 SUBTYPE X01 IS resolved std_ulogic RANGE 'X' TO '1';
 -- ('X','0','1')
 SUBTYPE X01Z IS resolved std_ulogic RANGE 'X' TO 'Z';

-- ('X','0','1','Z')

470 Appendix D

 SUBTYPE UX01 IS resolved std_ulogic RANGE 'U' TO '1';
-- ('U','X','0','1')

 SUBTYPE UX01Z IS resolved std_ulogic RANGE 'U' TO 'Z';
 -- ('U','X','0','1','Z')

 -- overloaded logical operators

 FUNCTION "and" (l : std_ulogic; r : std_ulogic) RETURN
 UX01;
 FUNCTION "nand" (l : std_ulogic; r : std_ulogic) RETURN
 UX01;
 FUNCTION "or" (l : std_ulogic; r : std_ulogic) RETURN
 UX01;
 FUNCTION "nor" (l : std_ulogic; r : std_ulogic) RETURN
 UX01;
 FUNCTION "xor" (l : std_ulogic; r : std_ulogic) RETURN
 UX01;
 function "xnor" (l : std_ulogic; r : std_ulogic) return
 ux01;
 FUNCTION "not" (l : std_ulogic) RETURN
 UX01;

 -- vectorized overloaded logical operators

 FUNCTION "and" (l, r : std_logic_vector) RETURN
 std_logic_vector;
 FUNCTION "and" (l, r : std_ulogic_vector) RETURN
 std_ulogic_vector;

 FUNCTION "nand" (l, r : std_logic_vector) RETURN
 std_logic_vector;
 FUNCTION "nand" (l, r : std_ulogic_vector) RETURN
 std_ulogic_vector;

 FUNCTION "or" (l, r : std_logic_vector) RETURN
 std_logic_vector;
 FUNCTION "or" (l, r : std_ulogic_vector) RETURN
 std_ulogic_vector;

 FUNCTION "nor" (l, r : std_logic_vector) RETURN
 std_logic_vector;
 FUNCTION "nor" (l, r : std_ulogic_vector) RETURN
 std_ulogic_vector;

 FUNCTION "xor" (l, r : std_logic_vector) RETURN
 std_logic_vector;
 FUNCTION "xor" (l, r : std_ulogic_vector) RETURN
 std_ulogic_vector;

STD_LOGIC_1164 Package 471

 function "xnor" (l, r : std_logic_vector) return
 std_logic_vector;
 function "xnor" (l, r : std_ulogic_vector) return
 std_ulogic_vector;

 FUNCTION "not" (l : std_logic_vector) RETURN
 std_logic_vector;
 FUNCTION "not" (l : std_ulogic_vector) RETURN
 std_ulogic_vector;

 -- conversion functions

 FUNCTION To_bit (s : std_ulogic; xmap : BIT := '0')
 RETURN BIT;
 FUNCTION To_bitvector (s : std_logic_vector;
 xmap : BIT := '0') RETURN BIT_VECTOR;
 FUNCTION To_bitvector (s : std_ulogic_vector;
 xmap : BIT := '0') RETURN BIT_VECTOR;

 FUNCTION To_StdULogic (b : BIT) RETURN
 std_ulogic;
 FUNCTION To_StdLogicVector (b : BIT_VECTOR) RETURN
 std_logic_vector;
 FUNCTION To_StdLogicVector (s : std_ulogic_vector)
 RETURN std_logic_vector;
 alias to_slv is To_StdLogicVector [BIT_VECTOR return
 std_logic_vector] ;
 alias to_slv is To_StdLogicVector [std_ulogic_vector
 return std_logic_vector] ;
 FUNCTION To_StdULogicVector (b : BIT_VECTOR) RETURN
 std_ulogic_vector;
 FUNCTION To_StdULogicVector (s : std_logic_vector)
 RETURN std_ulogic_vector;
 alias to_sulv is To_StdULogicVector [BIT_VECTOR return
 std_ulogic_vector] ;
 alias to_sulv is To_StdULogicVector [std_logic_vector
 return std_ulogic_vector] ;

 -- strength strippers and type convertors

 FUNCTION To_X01 (s : std_logic_vector) RETURN
 std_logic_vector;
 FUNCTION To_X01 (s : std_ulogic_vector) RETURN
 std_ulogic_vector;
 FUNCTION To_X01 (s : std_ulogic) RETURN X01;
 FUNCTION To_X01 (b : BIT_VECTOR) RETURN
 std_logic_vector;
 FUNCTION To_X01 (b : BIT_VECTOR) RETURN
 std_ulogic_vector;
 FUNCTION To_X01 (b : BIT) RETURN X01;

472 Appendix D

 FUNCTION To_X01Z (s : std_logic_vector) RETURN
 std_logic_vector;
 FUNCTION To_X01Z (s : std_ulogic_vector) RETURN
 std_ulogic_vector;
 FUNCTION To_X01Z (s : std_ulogic) RETURN X01Z;
 FUNCTION To_X01Z (b : BIT_VECTOR) RETURN
 std_logic_vector;
 FUNCTION To_X01Z (b : BIT_VECTOR) RETURN
 std_ulogic_vector;
 FUNCTION To_X01Z (b : BIT) RETURN X01Z;

 FUNCTION To_UX01 (s : std_logic_vector) RETURN
 std_logic_vector;
 FUNCTION To_UX01 (s : std_ulogic_vector) RETURN
 std_ulogic_vector;
 FUNCTION To_UX01 (s : std_ulogic) RETURN UX01;
 FUNCTION To_UX01 (b : BIT_VECTOR) RETURN
 std_logic_vector;
 FUNCTION To_UX01 (b : BIT_VECTOR) RETURN
 std_ulogic_vector;
 FUNCTION To_UX01 (b : BIT) RETURN UX01;

 -- edge detection

 FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN
 BOOLEAN;
 FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN
 BOOLEAN;

 -- object contains an unknown

 FUNCTION Is_X (s : std_ulogic_vector) RETURN BOOLEAN;
 FUNCTION Is_X (s : std_logic_vector) RETURN BOOLEAN;
 FUNCTION Is_X (s : std_ulogic) RETURN BOOLEAN;

 -- New/updated funcitons for VHDL-200X fast track

 -- overloaded shift operators

 function "sll" (l : std_logic_vector; r : integer)
 RETURN std_logic_vector;
 function "sll" (l : std_ulogic_vector; r : integer)
 RETURN std_ulogic_vector;

 function "srl" (l : std_logic_vector; r : integer)
 RETURN std_logic_vector;
 function "srl" (l : std_ulogic_vector; r : integer)
 RETURN std_ulogic_vector;

STD_LOGIC_1164 Package 473

 function "sla" (l : std_logic_vector; r : integer)
 RETURN std_logic_vector;
 function "sla" (l : std_ulogic_vector; r : integer)
 RETURN std_ulogic_vector;

 function "sra" (l : std_logic_vector; r : integer)
 RETURN std_logic_vector;
 function "sra" (l : std_ulogic_vector; r : integer)
 RETURN std_ulogic_vector;

 function "rol" (l : std_logic_vector; r : integer)
 RETURN std_logic_vector;
 function "rol" (l : std_ulogic_vector; r : integer)
 RETURN std_ulogic_vector;

 function "ror" (l : std_logic_vector; r : integer)
 RETURN std_logic_vector;
 function "ror" (l : std_ulogic_vector; r : integer)
 RETURN std_ulogic_vector;

 -- vector/scalar overloaded logical operators

 FUNCTION "and" (l : std_logic_vector; r : std_ulogic)
 RETURN std_logic_vector;
 FUNCTION "and" (l : std_ulogic_vector; r : std_ulogic)
 RETURN std_ulogic_vector;
 FUNCTION "and" (l : std_ulogic; r : std_logic_vector)
 RETURN std_logic_vector;
 FUNCTION "and" (l : std_ulogic; r : std_ulogic_vector)
 RETURN std_ulogic_vector;
 FUNCTION "nand" (l : std_logic_vector; r : std_ulogic)
 RETURN std_logic_vector;
 FUNCTION "nand" (l : std_ulogic_vector; r : std_ulogic)
 RETURN std_ulogic_vector;
 FUNCTION "nand" (l : std_ulogic; r : std_logic_vector)
 RETURN std_logic_vector;
 FUNCTION "nand" (l : std_ulogic; r : std_ulogic_vector)
 RETURN std_ulogic_vector;
 FUNCTION "or" (l : std_logic_vector; r : std_ulogic)
 RETURN std_logic_vector;
 FUNCTION "or" (l : std_ulogic_vector; r : std_ulogic)
 RETURN std_ulogic_vector;
 FUNCTION "or" (l : std_ulogic; r : std_logic_vector)
 RETURN std_logic_vector;
 FUNCTION "or" (l : std_ulogic; r : std_ulogic_vector)
 RETURN std_ulogic_vector;
 FUNCTION "nor" (l : std_logic_vector; r : std_ulogic)
 RETURN std_logic_vector;
 FUNCTION "nor" (l : std_ulogic_vector; r : std_ulogic)
 RETURN std_ulogic_vector;

474 Appendix D

 FUNCTION "nor" (l : std_ulogic; r : std_logic_vector)
 RETURN std_logic_vector;
 FUNCTION "nor" (l : std_ulogic; r : std_ulogic_vector)
 RETURN std_ulogic_vector;
 FUNCTION "xor" (l : std_logic_vector; r : std_ulogic)
 RETURN std_logic_vector;
 FUNCTION "xor" (l : std_ulogic_vector; r : std_ulogic)
 RETURN std_ulogic_vector;
 FUNCTION "xor" (l : std_ulogic; r : std_logic_vector)
 RETURN std_logic_vector;
 FUNCTION "xor" (l : std_ulogic; r : std_ulogic_vector)
 RETURN std_ulogic_vector;
 FUNCTION "xnor" (l : std_logic_vector; r : std_ulogic)
 RETURN std_logic_vector;
 FUNCTION "xnor" (l : std_ulogic_vector; r : std_ulogic)
 RETURN std_ulogic_vector;
 FUNCTION "xnor" (l : std_ulogic; r : std_logic_vector)
 RETURN std_logic_vector;
 FUNCTION "xnor" (l : std_ulogic; r : std_ulogic_vector)
 RETURN std_ulogic_vector;

 -- vector-reduction functions

-- function "and" (arg : std_logic_vector) RETURN

 -- std_ulogic; -- %%% New syntax
 FUNCTION and_reduce (arg : std_logic_vector) RETURN
 std_ulogic;
-- function "and" (arg : std_ulogic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION and_reduce (arg : std_ulogic_vector) RETURN
 std_ulogic;
-- function "nand" (arg : std_logic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION nand_reduce (arg : std_logic_vector) RETURN
 std_ulogic;
-- function "nand" (arg : std_ulogic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION nand_reduce (arg : std_ulogic_vector) RETURN
 std_ulogic;
-- function "or" (arg : std_logic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION or_reduce (arg : std_logic_vector) RETURN
 std_ulogic;
-- function "or" (arg : std_ulogic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION or_reduce (arg : std_ulogic_vector) RETURN
 std_ulogic;
-- function "nor" (arg : std_logic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION nor_reduce (arg : std_logic_vector) RETURN
 std_ulogic;

STD_LOGIC_1164 Package 475

-- function "nor" (arg : std_ulogic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION nor_reduce (arg : std_ulogic_vector) RETURN
 std_ulogic;
-- function "xor" (arg : std_logic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION xor_reduce (arg : std_logic_vector) RETURN
 std_ulogic;
-- function "xor" (arg : std_ulogic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION xor_reduce (arg : std_ulogic_vector) RETURN
 std_ulogic;
-- function "xnor" (arg : std_logic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION xnor_reduce (arg : std_logic_vector) RETURN
 std_ulogic;
-- function "xnor" (arg : std_ulogic_vector) RETURN
-- std_ulogic; -- %%% New syntax

 FUNCTION xnor_reduce (arg : std_ulogic_vector) RETURN
 std_ulogic;

 -- match functions

 FUNCTION match (l, r : std_ulogic) RETURN BOOLEAN;
 FUNCTION match (l, r : std_logic_vector) RETURN
 BOOLEAN;
 FUNCTION match (l, r : std_ulogic_vector) RETURN
 BOOLEAN;

 -- rtl_synthesis off

-- Read and Write functions copied from
-- "std_logic_textio"

-- Read and Write procedures for STD_ULOGIC and
-- STD_ULOGIC_VECTOR

 procedure READ (L : inout LINE; VALUE : out STD_ULOGIC;
 GOOD : out BOOLEAN);
 procedure READ (L : inout LINE; VALUE : out STD_ULOGIC);

 procedure READ (L : inout LINE; VALUE : out
 STD_ULOGIC_VECTOR; GOOD : out BOOLEAN);
 procedure READ (L : inout LINE; VALUE : out
 STD_ULOGIC_VECTOR);

 procedure WRITE (L : inout LINE; VALUE : in STD_ULOGIC;
 JUSTIFIED : in SIDE := RIGHT; FIELD : in
 WIDTH := 0);

 procedure WRITE (L : inout LINE; VALUE : in

476 Appendix D

 STD_ULOGIC_VECTOR; JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0);

 -- Read and Write procedures for STD_LOGIC_VECTOR

 procedure READ (L : inout LINE; VALUE : out
 STD_LOGIC_VECTOR; GOOD : out BOOLEAN);
 procedure READ (L : inout LINE; VALUE : out
 STD_LOGIC_VECTOR);

 procedure WRITE (L : inout LINE; VALUE : in
 STD_LOGIC_VECTOR; JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0);

 alias bread is read [line, STD_ULOGIC, BOOLEAN] ;
 alias bread is read [line, STD_ULOGIC] ;
 alias bread is read [line, STD_ULOGIC_VECTOR, BOOLEAN] ;
 alias bread is read [line, STD_ULOGIC_VECTOR] ;
 alias bread is read [line, STD_LOGIC_VECTOR, BOOLEAN] ;
 alias bread is read [line, STD_LOGIC_VECTOR] ;
 alias bwrite is write [line, STD_ULOGIC, side, width] ;
 alias bwrite is write [line, STD_ULOGIC_VECTOR, side,
 width] ;
 alias bwrite is write [line, STD_LOGIC_VECTOR, side,
 width] ;

 -- Read and Write procedures for Hex values

 procedure HREAD (L : inout LINE; VALUE : out
 STD_ULOGIC_VECTOR; GOOD : out BOOLEAN);
 procedure HREAD (L : inout LINE; VALUE : out
 STD_ULOGIC_VECTOR);

 procedure HWRITE (L : inout LINE; VALUE : in
 STD_ULOGIC_VECTOR; JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0);

 procedure HREAD (L : inout LINE; VALUE : out
 STD_LOGIC_VECTOR; GOOD : out BOOLEAN);
 procedure HREAD (L : inout LINE; VALUE : out
 STD_LOGIC_VECTOR);

 procedure HWRITE (L : inout LINE; VALUE : in
 STD_LOGIC_VECTOR; JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0);

-- Read and Write procedures for Octal values

 procedure OREAD (L : inout LINE; VALUE : out
 STD_ULOGIC_VECTOR; GOOD : out BOOLEAN);
 procedure OREAD (L : inout LINE; VALUE : out

STD_LOGIC_1164 Package 477

 STD_ULOGIC_VECTOR);

 procedure OWRITE (L : inout LINE; VALUE : in
 STD_ULOGIC_VECTOR; JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0);

 procedure OREAD (L : inout LINE; VALUE : out
 STD_LOGIC_VECTOR; GOOD : out BOOLEAN);
 procedure OREAD (L : inout LINE; VALUE : out
 STD_LOGIC_VECTOR);

 procedure OWRITE (L : inout LINE; VALUE : in
 STD_LOGIC_VECTOR; JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0);

 -- rtl_synthesis off

 function to_string (
 value : std_ulogic_vector;
 justified : side := RIGHT;
 field : width := 0
) return string;

 alias to_bstring is to_string [std_ulogic_vector, side,
 width return string];

 function to_hstring (
 value : std_ulogic_vector;
 justified : side := RIGHT;
 field : width := 0
) return string;

 function to_ostring (
 value : std_ulogic_vector;
 justified : side := RIGHT;
 field : width := 0
) return string ;

 function to_string (
 value : std_logic_vector;
 justified : side := RIGHT;
 field : width := 0
) return string;

 alias to_bstring is to_string [std_logic_vector, side,
 width return string];

 function to_hstring (
 value : std_logic_vector;
 justified : side := RIGHT;
 field : width := 0
) return string;

478 Appendix D

 function to_ostring (
 value : std_logic_vector;
 justified : side := RIGHT;
 field : width := 0
) return string ;

END package std_logic_1164;

479

E STD_LOGIC TEXTIO Package

This appendix shows the Std_Logic TEXTIO package. All designs us-
ing this package must use the LIBRARY IEEE; and USE
STD_LOGIC TEXTIO;

-- Copyright (c) 1990, 1991, 1992 by Synopsys, Inc. All
-- rights reserved.
--
-- This source file may be used and distributed without
-- restriction provided that this copyright statement is
-- not removed from the file and that any derivative work
-- contains this copyright notice.
--
-- Package name: STD_LOGIC_TEXTIO
--
-- Purpose: This package overloads the standard TEXTIO
-- procedures READ and WRITE.
--
-- Author: CRC, TS

use STD.textio.all;
library IEEE;
use IEEE.std_logic_1164.all;

package STD_LOGIC_TEXTIO is
--synopsys synthesis_off
 -- Read and Write procedures for STD_ULOGIC and

-- STD_ULOGIC_VECTOR
 procedure READ(L:inout LINE; VALUE:out STD_ULOGIC);
 procedure READ(L:inout LINE; VALUE:out STD_ULOGIC;

GOOD: out BOOLEAN);
 procedure READ(L:inout LINE; VALUE:out

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

480 Appendix E

STD_ULOGIC_VECTOR);
 procedure READ(L:inout LINE; VALUE:out

STD_ULOGIC_VECTOR; GOOD: out BOOLEAN);
 procedure WRITE(L:inout LINE; VALUE:in STD_ULOGIC;
 JUSTIFIED:in SIDE := RIGHT; FIELD:in

WIDTH := 0);
 procedure WRITE(L:inout LINE; VALUE:in

STD_ULOGIC_VECTOR; JUSTIFIED:in SIDE := RIGHT;
FIELD:in WIDTH := 0);

 -- Read and Write procedures for STD_LOGIC_VECTOR
 procedure READ(L:inout LINE; VALUE:out

STD_LOGIC_VECTOR);
 procedure READ(L:inout LINE; VALUE:out

STD_LOGIC_VECTOR; GOOD: out BOOLEAN);
 procedure WRITE(L:inout LINE; VALUE:in

STD_LOGIC_VECTOR; JUSTIFIED:in SIDE := RIGHT;
FIELD:in WIDTH := 0);

 -- Read and Write procedures for Hex and Octal values.
 -- The values appear in the file as a series of

-- characters between 0-F (Hex), or 0-7 (Octal)
-- respectively.

 procedure HREAD(L:inout LINE; VALUE:out
STD_ULOGIC_VECTOR);

 procedure HREAD(L:inout LINE; VALUE:out
STD_ULOGIC_VECTOR; GOOD: out BOOLEAN);

 procedure HWRITE(L:inout LINE; VALUE:in
STD_ULOGIC_VECTOR; JUSTIFIED:in SIDE := RIGHT;
FIELD:in WIDTH := 0);

 procedure HREAD(L:inout LINE; VALUE:out
STD_LOGIC_VECTOR);

 procedure HREAD(L:inout LINE; VALUE:out
STD_LOGIC_VECTOR; GOOD: out BOOLEAN);

 procedure HWRITE(L:inout LINE; VALUE:in
STD_LOGIC_VECTOR; JUSTIFIED:in SIDE := RIGHT;
FIELD:in WIDTH := 0);

 -- Octal
 procedure OREAD(L:inout LINE; VALUE:out

STD_ULOGIC_VECTOR);
 procedure OREAD(L:inout LINE; VALUE:out

STD_ULOGIC_VECTOR; GOOD: out BOOLEAN);
 procedure OWRITE(L:inout LINE; VALUE:in

STD_ULOGIC_VECTOR; JUSTIFIED:in SIDE := RIGHT;
FIELD:in WIDTH := 0);

 procedure OREAD(L:inout LINE; VALUE:out
STD_LOGIC_VECTOR);

 procedure OREAD(L:inout LINE; VALUE:out
STD_LOGIC_VECTOR; GOOD: out BOOLEAN);

 procedure OWRITE(L:inout LINE; VALUE:in
STD_LOGIC_VECTOR; JUSTIFIED:in SIDE := RIGHT;
FIELD:in WIDTH := 0);

 --synopsys synthesis_on
end STD_LOGIC_TEXTIO;

481

F STD_LOGIC_ARITH Package

This appendix shows the Std_Logic Arithmetic package. All designs
using this package must use the LIBRARY IEEE; and USE
IEEE.std_logic_arith ALL; statements for making this package and
its contents accessible.

-- --
-- --
-- Copyright (c) 1990,1991,1992 by Synopsys, Inc. All --
-- rights reserved. --
-- --
-- This source file may be used and distributed without --
-- restriction provided that this copyright statement -–
-- is not removed from the file and that any derivative --
-- work contains this copyright notice. --
-- --
-- Package name: STD_LOGIC_ARITH --
-- --
-- Purpose: --
-- A set of arithemtic, conversion, and comparison --
-- functions for SIGNED, UNSIGNED, SMALL_INT, --
-- INTEGER, STD_ULOGIC, STD_LOGIC, and --
-- STD_LOGIC_VECTOR. --
-- --

-- Attributes added to invoke MTI builtin functions

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

482 Appendix F

library IEEE;
use IEEE.std_logic_1164.all;

package std_logic_arith is

 type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
 type SIGNED is array (NATURAL range <>) of STD_LOGIC;
 subtype SMALL_INT is INTEGER range 0 to 1;

 attribute builtin_subprogram: string;

 function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
 attribute builtin_subprogram of
 "+"[UNSIGNED, UNSIGNED return UNSIGNED]: function

is "stdarith_plus_uuu";

 function "+"(L: SIGNED; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "+"[SIGNED, SIGNED return SIGNED]: function is

"stdarith_plus_sss";

 function "+"(L: UNSIGNED; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "+"[UNSIGNED, SIGNED return SIGNED]: function is

"stdarith_plus_uss";

 function "+"(L: SIGNED; R: UNSIGNED) return SIGNED;
 attribute builtin_subprogram of
 "+"[SIGNED, UNSIGNED return SIGNED]: function is

"stdarith_plus_sus";

 function "+"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
 attribute builtin_subprogram of
 "+"[UNSIGNED, INTEGER return UNSIGNED]: function is

"stdarith_plus_uiu";

 function "+"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
 attribute builtin_subprogram of
 "+"[INTEGER, UNSIGNED return UNSIGNED]: function is

"stdarith_plus_iuu";

 function "+"(L: SIGNED; R: INTEGER) return SIGNED;
 attribute builtin_subprogram of
 "+"[SIGNED, INTEGER return SIGNED]: function is

"stdarith_plus_sis";

 function "+"(L: INTEGER; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "+"[INTEGER, SIGNED return SIGNED]: function is

"stdarith_plus_iss";

 function "+"(L: UNSIGNED; R: STD_ULOGIC) return
UNSIGNED;

STD_LOGIC ARITHMETIC Package 483

 attribute builtin_subprogram of
 "+"[UNSIGNED, STD_ULOGIC return UNSIGNED]: function

is "stdarith_plus_uxu";

 function "+"(L: STD_ULOGIC; R: UNSIGNED) return
UNSIGNED;

 attribute builtin_subprogram of
 "+"[STD_ULOGIC, UNSIGNED return UNSIGNED]: function

is "stdarith_plus_xuu";

 function "+"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
 attribute builtin_subprogram of
 "+"[SIGNED, STD_ULOGIC return SIGNED]: function is

"stdarith_plus_sxs";

 function "+"(L: STD_ULOGIC; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "+"[STD_ULOGIC, SIGNED return SIGNED]: function is

"stdarith_plus_xss";

 function "+"(L: UNSIGNED; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[UNSIGNED, UNSIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_plus_uuu";

 function "+"(L: SIGNED; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[SIGNED, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_plus_sss";

 function "+"(L: UNSIGNED; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[UNSIGNED, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_plus_uss";

 function "+"(L: SIGNED; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[SIGNED, UNSIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_plus_sus";

 function "+"(L: UNSIGNED; R: INTEGER) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[UNSIGNED, INTEGER return STD_LOGIC_VECTOR]:

function is "stdarith_plus_uiu";

 function "+"(L: INTEGER; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of

484 Appendix F

 "+"[INTEGER, UNSIGNED return STD_LOGIC_VECTOR]:
function is "stdarith_plus_iuu";

 function "+"(L: SIGNED; R: INTEGER) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[SIGNED, INTEGER return STD_LOGIC_VECTOR]:

function is "stdarith_plus_sis";

 function "+"(L: INTEGER; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[INTEGER, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_plus_iss";

 function "+"(L: UNSIGNED; R: STD_ULOGIC) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[UNSIGNED, STD_ULOGIC return STD_LOGIC_VECTOR]:

function is "stdarith_plus_uxu";

 function "+"(L: STD_ULOGIC; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_ULOGIC, UNSIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_plus_xuu";

 function "+"(L: SIGNED; R: STD_ULOGIC) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[SIGNED, STD_ULOGIC return STD_LOGIC_VECTOR]:

function is "stdarith_plus_sxs";

 function "+"(L: STD_ULOGIC; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_ULOGIC, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_plus_xss";

 function "-"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
 attribute builtin_subprogram of
 "-"[UNSIGNED, UNSIGNED return UNSIGNED]: function

is "stdarith_minus_uuu";

 function "-"(L: SIGNED; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "-"[SIGNED, SIGNED return SIGNED]: function is

"stdarith_minus_sss";

 function "-"(L: UNSIGNED; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "-"[UNSIGNED, SIGNED return SIGNED]: function is

STD_LOGIC ARITHMETIC Package 485

"stdarith_minus_uss";

 function "-"(L: SIGNED; R: UNSIGNED) return SIGNED;
 attribute builtin_subprogram of
 "-"[SIGNED, UNSIGNED return SIGNED]: function is

"stdarith_minus_sus";

 function "-"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
 attribute builtin_subprogram of
 "-"[UNSIGNED, INTEGER return UNSIGNED]: function is

"stdarith_minus_uiu";

 function "-"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
 attribute builtin_subprogram of
 "-"[INTEGER, UNSIGNED return UNSIGNED]: function is

"stdarith_minus_iuu";

 function "-"(L: SIGNED; R: INTEGER) return SIGNED;
 attribute builtin_subprogram of
 "-"[SIGNED, INTEGER return SIGNED]: function is

"stdarith_minus_sis";

 function "-"(L: INTEGER; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "-"[INTEGER, SIGNED return SIGNED]: function is

"stdarith_minus_iss";

 function "-"(L: UNSIGNED; R: STD_ULOGIC) return
UNSIGNED;

 attribute builtin_subprogram of
 "-"[UNSIGNED, STD_ULOGIC return UNSIGNED]: function

is "stdarith_minus_uxu";

 function "-"(L: STD_ULOGIC; R: UNSIGNED) return
UNSIGNED;

 attribute builtin_subprogram of
 "-"[STD_ULOGIC, UNSIGNED return UNSIGNED]: function

is "stdarith_minus_xuu";

 function "-"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
 attribute builtin_subprogram of
 "-"[SIGNED, STD_ULOGIC return SIGNED]: function is

"stdarith_minus_sxs";

 function "-"(L: STD_ULOGIC; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "-"[STD_ULOGIC, SIGNED return SIGNED]: function is

"stdarith_minus_xss";

 function "-"(L: UNSIGNED; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[UNSIGNED, UNSIGNED return STD_LOGIC_VECTOR]:

486 Appendix F

function is "stdarith_minus_uuu";

 function "-"(L: SIGNED; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[SIGNED, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_minus_sss";

 function "-"(L: UNSIGNED; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[UNSIGNED, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_minus_uss";

 function "-"(L: SIGNED; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[SIGNED, UNSIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_minus_sus";

 function "-"(L: UNSIGNED; R: INTEGER) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[UNSIGNED, INTEGER return STD_LOGIC_VECTOR]:

function is "stdarith_minus_uiu";

 function "-"(L: INTEGER; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[INTEGER, UNSIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_minus_iuu";

 function "-"(L: SIGNED; R: INTEGER) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[SIGNED, INTEGER return STD_LOGIC_VECTOR]:

function is "stdarith_minus_sis";

 function "-"(L: INTEGER; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[INTEGER, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_minus_iss";

 function "-"(L: UNSIGNED; R: STD_ULOGIC) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[UNSIGNED, STD_ULOGIC return STD_LOGIC_VECTOR]:

function is "stdarith_minus_uxu";

 function "-"(L: STD_ULOGIC; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of

STD_LOGIC ARITHMETIC Package 487

 "-"[STD_ULOGIC, UNSIGNED return STD_LOGIC_VECTOR]:
function is "stdarith_minus_xuu";

 function "-"(L: SIGNED; R: STD_ULOGIC) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[SIGNED, STD_ULOGIC return STD_LOGIC_VECTOR]:

function is "stdarith_minus_sxs";

 function "-"(L: STD_ULOGIC; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[STD_ULOGIC, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_minus_xss";

 function "+"(L: UNSIGNED) return UNSIGNED;
 attribute builtin_subprogram of
 "+"[UNSIGNED return UNSIGNED]: function is

"stdarith_unary_plus_uu";

 function "+"(L: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "+"[SIGNED return SIGNED]: function is

"stdarith_unary_plus_ss";

 function "-"(L: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "-"[SIGNED return SIGNED]: function is

"stdarith_unary_minus_ss";

 function "ABS"(L: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "ABS"[SIGNED return SIGNED]: function is

"stdarith_abs_ss";

 function "+"(L: UNSIGNED) return STD_LOGIC_VECTOR;
 attribute builtin_subprogram of
 "+"[UNSIGNED return STD_LOGIC_VECTOR]: function is

"stdarith_unary_plus_uu";

 function "+"(L: SIGNED) return STD_LOGIC_VECTOR;
 attribute builtin_subprogram of
 "+"[SIGNED return STD_LOGIC_VECTOR]: function is

"stdarith_unary_plus_ss";

 function "-"(L: SIGNED) return STD_LOGIC_VECTOR;
 attribute builtin_subprogram of
 "-"[SIGNED return STD_LOGIC_VECTOR]: function is

"stdarith_unary_minus_ss";

 function "ABS"(L: SIGNED) return STD_LOGIC_VECTOR;
 attribute builtin_subprogram of

488 Appendix F

 "ABS"[SIGNED return STD_LOGIC_VECTOR]: function is
"stdarith_abs_ss";

 function "*"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
 attribute builtin_subprogram of
 "*"[UNSIGNED, UNSIGNED return UNSIGNED]: function

is "stdarith_mult_uuu";

 function "*"(L: SIGNED; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "*"[SIGNED, SIGNED return SIGNED]: function is

"stdarith_mult_sss";

 function "*"(L: SIGNED; R: UNSIGNED) return SIGNED;
 attribute builtin_subprogram of
 "*"[SIGNED, UNSIGNED return SIGNED]: function is

"stdarith_mult_sus";

 function "*"(L: UNSIGNED; R: SIGNED) return SIGNED;
 attribute builtin_subprogram of
 "*"[UNSIGNED, SIGNED return SIGNED]: function is

"stdarith_mult_uss";

 function "*"(L: UNSIGNED; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "*"[UNSIGNED, UNSIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_mult_uuu";

 function "*"(L: SIGNED; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "*"[SIGNED, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_mult_sss";

 function "*"(L: SIGNED; R: UNSIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "*"[SIGNED, UNSIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_mult_sus";

 function "*"(L: UNSIGNED; R: SIGNED) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "*"[UNSIGNED, SIGNED return STD_LOGIC_VECTOR]:

function is "stdarith_mult_uss";

 function "<"(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<"[UNSIGNED, UNSIGNED return BOOLEAN]: function is

"stdarith_lt_uu";

STD_LOGIC ARITHMETIC Package 489

 function "<"(L: SIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<"[SIGNED, SIGNED return BOOLEAN]: function is

"stdarith_lt_ss";

 function "<"(L: UNSIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<"[UNSIGNED, SIGNED return BOOLEAN]: function is

"stdarith_lt_us";

 function "<"(L: SIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<"[SIGNED, UNSIGNED return BOOLEAN]: function is

"stdarith_lt_su";

 function "<"(L: UNSIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 "<"[UNSIGNED, INTEGER return BOOLEAN]: function is

"stdarith_lt_ui";

 function "<"(L: INTEGER; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<"[INTEGER, UNSIGNED return BOOLEAN]: function is

"stdarith_lt_iu";

 function "<"(L: SIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 "<"[SIGNED, INTEGER return BOOLEAN]: function is

"stdarith_lt_si";

 function "<"(L: INTEGER; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<"[INTEGER, SIGNED return BOOLEAN]: function is

"stdarith_lt_is";

 function "<="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<="[UNSIGNED, UNSIGNED return BOOLEAN]: function

is "stdarith_lte_uu";

 function "<="(L: SIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<="[SIGNED, SIGNED return BOOLEAN]: function is

"stdarith_lte_ss";

 function "<="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<="[UNSIGNED, SIGNED return BOOLEAN]: function is

"stdarith_lte_us";

 function "<="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of

490 Appendix F

 "<="[SIGNED, UNSIGNED return BOOLEAN]: function is
"stdarith_lte_su";

 function "<="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 "<="[UNSIGNED, INTEGER return BOOLEAN]: function is

"stdarith_lte_ui";

 function "<="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<="[INTEGER, UNSIGNED return BOOLEAN]: function is

"stdarith_lte_iu";

 function "<="(L: SIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 "<="[SIGNED, INTEGER return BOOLEAN]: function is

"stdarith_lte_si";

 function "<="(L: INTEGER; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "<="[INTEGER, SIGNED return BOOLEAN]: function is

"stdarith_lte_is";

 function ">"(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">"[UNSIGNED, UNSIGNED return BOOLEAN]: function is

"stdarith_gt_uu";

 function ">"(L: SIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">"[SIGNED, SIGNED return BOOLEAN]: function is

"stdarith_gt_ss";

 function ">"(L: UNSIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">"[UNSIGNED, SIGNED return BOOLEAN]: function is

"stdarith_gt_us";

 function ">"(L: SIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">"[SIGNED, UNSIGNED return BOOLEAN]: function is

"stdarith_gt_su";

 function ">"(L: UNSIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 ">"[UNSIGNED, INTEGER return BOOLEAN]: function is

"stdarith_gt_ui";

 function ">"(L: INTEGER; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">"[INTEGER, UNSIGNED return BOOLEAN]: function is

"stdarith_gt_iu";

STD_LOGIC ARITHMETIC Package 491

 function ">"(L: SIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 ">"[SIGNED, INTEGER return BOOLEAN]: function is

"stdarith_gt_si";

 function ">"(L: INTEGER; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">"[INTEGER, SIGNED return BOOLEAN]: function is

"stdarith_gt_is";

 function ">="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">="[UNSIGNED, UNSIGNED return BOOLEAN]: function

is "stdarith_gte_uu";

 function ">="(L: SIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">="[SIGNED, SIGNED return BOOLEAN]: function is

"stdarith_gte_ss";

 function ">="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">="[UNSIGNED, SIGNED return BOOLEAN]: function is

"stdarith_gte_us";

 function ">="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">="[SIGNED, UNSIGNED return BOOLEAN]: function is

"stdarith_gte_su";

 function ">="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 ">="[UNSIGNED, INTEGER return BOOLEAN]: function is

"stdarith_gte_ui";

 function ">="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">="[INTEGER, UNSIGNED return BOOLEAN]: function is

"stdarith_gte_iu";

 function ">="(L: SIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 ">="[SIGNED, INTEGER return BOOLEAN]: function is

"stdarith_gte_si";

 function ">="(L: INTEGER; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 ">="[INTEGER, SIGNED return BOOLEAN]: function is

"stdarith_gte_is";

492 Appendix F

 function "="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "="[UNSIGNED, UNSIGNED return BOOLEAN]: function is

"stdarith_eq_uu";

 function "="(L: SIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "="[SIGNED, SIGNED return BOOLEAN]: function is

"stdarith_eq_ss";

 function "="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "="[UNSIGNED, SIGNED return BOOLEAN]: function is

"stdarith_eq_us";

 function "="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "="[SIGNED, UNSIGNED return BOOLEAN]: function is

"stdarith_eq_su";

 function "="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 "="[UNSIGNED, INTEGER return BOOLEAN]: function is

"stdarith_eq_ui";

 function "="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "="[INTEGER, UNSIGNED return BOOLEAN]: function is

"stdarith_eq_iu";

 function "="(L: SIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 "="[SIGNED, INTEGER return BOOLEAN]: function is

"stdarith_eq_si";

 function "="(L: INTEGER; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "="[INTEGER, SIGNED return BOOLEAN]: function is

"stdarith_eq_is";

 function "/="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "/="[UNSIGNED, UNSIGNED return BOOLEAN]: function

is "stdarith_neq_uu";

 function "/="(L: SIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "/="[SIGNED, SIGNED return BOOLEAN]: function is

"stdarith_neq_ss";

 function "/="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of

STD_LOGIC ARITHMETIC Package 493

 "/="[UNSIGNED, SIGNED return BOOLEAN]: function is
"stdarith_neq_us";

 function "/="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "/="[SIGNED, UNSIGNED return BOOLEAN]: function is

"stdarith_neq_su";

 function "/="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 "/="[UNSIGNED, INTEGER return BOOLEAN]: function is

"stdarith_neq_ui";

 function "/="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "/="[INTEGER, UNSIGNED return BOOLEAN]: function is

"stdarith_neq_iu";

 function "/="(L: SIGNED; R: INTEGER) return BOOLEAN;
 attribute builtin_subprogram of
 "/="[SIGNED, INTEGER return BOOLEAN]: function is

"stdarith_neq_si";

 function "/="(L: INTEGER; R: SIGNED) return BOOLEAN;
 attribute builtin_subprogram of
 "/="[INTEGER, SIGNED return BOOLEAN]: function is

"stdarith_neq_is";

 function SHL(ARG: UNSIGNED; COUNT: UNSIGNED) return
UNSIGNED;

 attribute builtin_subprogram of
 SHL[UNSIGNED, UNSIGNED return UNSIGNED]: function

is "stdarith_shl_uuu";

 function SHL(ARG: SIGNED; COUNT: UNSIGNED) return
SIGNED;

 attribute builtin_subprogram of
 SHL[SIGNED, UNSIGNED return SIGNED]: function is

"stdarith_shl_sus";

 function SHR(ARG: UNSIGNED; COUNT: UNSIGNED) return
UNSIGNED;

 attribute builtin_subprogram of
 SHR[UNSIGNED, UNSIGNED return UNSIGNED]: function

is "stdarith_shr_uuu";

 function SHR(ARG: SIGNED; COUNT: UNSIGNED) return
SIGNED;

 attribute builtin_subprogram of
 SHR[SIGNED, UNSIGNED return SIGNED]: function is

"stdarith_shr_sus";

494 Appendix F

 function CONV_INTEGER(ARG: INTEGER) return INTEGER;
 attribute builtin_subprogram of
 CONV_INTEGER[INTEGER return INTEGER]: function is

"stdarith_conv_integer_ii";

 function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;
 attribute builtin_subprogram of
 CONV_INTEGER[UNSIGNED return INTEGER]: function is

"stdarith_conv_integer_ui2";

-- If desired, you may select an optional implementation
-- for CONV_INTEGER(UNSIGNED) by changing the value of the
-- attribute:
-- stdarith_conv_integer_ui implements the original
-- CONV_INTEGER(UNSIGNED) VHDL which generates an
-- error if the argument is larger than 31 bits.
-- stdarith_conv_integer_ui2 allows 32 bits. It
-- generates a warning if the argument is 32 bits
-- and the MSB is not zero.
-- The default is stdarith_conv_integer_ui2.
--
-- attribute builtin_subprogram of
-- CONV_INTEGER[UNSIGNED return INTEGER]: function
-- is "stdarith_conv_integer_ui";

 function CONV_INTEGER(ARG: SIGNED) return INTEGER;
 attribute builtin_subprogram of
 CONV_INTEGER[SIGNED return INTEGER]: function is

"stdarith_conv_integer_si";

 function CONV_INTEGER(ARG: STD_ULOGIC) return
SMALL_INT;

 attribute builtin_subprogram of
 CONV_INTEGER[STD_ULOGIC return SMALL_INT]: function

is "stdarith_conv_integer_xz";

 function CONV_UNSIGNED(ARG: INTEGER; SIZE: INTEGER)
return UNSIGNED;

 attribute builtin_subprogram of
 CONV_UNSIGNED [INTEGER, INTEGER return UNSIGNED]:

function is "stdarith_conv_unsigned_iu";

 function CONV_UNSIGNED(ARG: UNSIGNED; SIZE: INTEGER)
return UNSIGNED;

 attribute builtin_subprogram of
 CONV_UNSIGNED [UNSIGNED, INTEGER return UNSIGNED]:

function is "stdarith_conv_unsigned_uu";

 function CONV_UNSIGNED(ARG: SIGNED; SIZE: INTEGER)
return UNSIGNED;

 attribute builtin_subprogram of

STD_LOGIC ARITHMETIC Package 495

 CONV_UNSIGNED [SIGNED, INTEGER return UNSIGNED]:
function is "stdarith_conv_unsigned_su";

 function CONV_UNSIGNED(ARG: STD_ULOGIC; SIZE: INTEGER)
return UNSIGNED;

 attribute builtin_subprogram of
 CONV_UNSIGNED [STD_ULOGIC, INTEGER return

UNSIGNED]: function is "stdarith_conv_unsigned_xu";

 function CONV_SIGNED(ARG: INTEGER; SIZE: INTEGER)
return SIGNED;

 attribute builtin_subprogram of
 CONV_SIGNED [INTEGER, INTEGER return SIGNED]:

function is "stdarith_conv_signed_is";

 function CONV_SIGNED(ARG: UNSIGNED; SIZE: INTEGER)
return SIGNED;

 attribute builtin_subprogram of
 CONV_SIGNED [UNSIGNED, INTEGER return SIGNED]:

function is "stdarith_conv_signed_us";

 function CONV_SIGNED(ARG: SIGNED; SIZE: INTEGER) return
SIGNED;

 attribute builtin_subprogram of
 CONV_SIGNED [SIGNED, INTEGER return SIGNED]:

function is "stdarith_conv_signed_ss";

 function CONV_SIGNED(ARG: STD_ULOGIC; SIZE: INTEGER)
return SIGNED;

 attribute builtin_subprogram of
 CONV_SIGNED [STD_ULOGIC, INTEGER return SIGNED]:

function is "stdarith_conv_signed_xs";

 function CONV_STD_LOGIC_VECTOR(ARG: INTEGER; SIZE:
INTEGER) return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 CONV_STD_LOGIC_VECTOR [INTEGER, INTEGER return

STD_LOGIC_VECTOR]: function is
 "stdarith_conv_slv_iv";

 function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED; SIZE:
INTEGER) return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 CONV_STD_LOGIC_VECTOR [UNSIGNED, INTEGER return

STD_LOGIC_VECTOR]: function is
 "stdarith_conv_slv_uv";

 function CONV_STD_LOGIC_VECTOR(ARG: SIGNED; SIZE:
INTEGER) return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of

496 Appendix F

 CONV_STD_LOGIC_VECTOR [SIGNED, INTEGER return
STD_LOGIC_VECTOR]: function is

 "stdarith_conv_slv_sv";

 function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC; SIZE:
INTEGER) return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 CONV_STD_LOGIC_VECTOR [STD_ULOGIC, INTEGER return

STD_LOGIC_VECTOR]: function is
 "stdarith_conv_slv_xv";

 -- zero extend STD_LOGIC_VECTOR (ARG) to SIZE,
 -- SIZE < 0 is same as SIZE = 0
 -- returns STD_LOGIC_VECTOR(SIZE-1 downto 0)
 function EXT(ARG: STD_LOGIC_VECTOR; SIZE: INTEGER)

return STD_LOGIC_VECTOR;
 attribute builtin_subprogram of
 EXT [STD_LOGIC_VECTOR, INTEGER return

STD_LOGIC_VECTOR]: function is
 "stdarith_zeroextend_vv";

 -- sign extend STD_LOGIC_VECTOR (ARG) to SIZE,
 -- SIZE < 0 is same as SIZE = 0
 -- return STD_LOGIC_VECTOR(SIZE-1 downto 0)
 function SXT(ARG: STD_LOGIC_VECTOR; SIZE: INTEGER)

return STD_LOGIC_VECTOR;
 attribute builtin_subprogram of
 SXT [STD_LOGIC_VECTOR, INTEGER return

STD_LOGIC_VECTOR]: function is
 "stdarith_signextend_vv";

end Std_logic_arith;

497

G STD_LOGIC_SIGNED

This appendix shows the Std_Logic Signed package. All designs using
this package must use the LIBRARY IEEE; and USE
IEEE.std_logic_signed.ALL; statements for making this package and
its contents accessible.

-- --
-- Copyright (c) 1990, 1991, 1992 by Synopsys, Inc. --
-- All rights reserved. --
-- --
-- This source file may be used and distributed without --
-- restriction provided that this copyright statement --
-- is not removed from the file and that any derivative --
-- work contains this copyright notice. --
-- --
-- Package name: STD_LOGIC_SIGNED --
-- --
-- --
-- Date: 09/11/91 KN --
-- 10/08/92 AMT change std_ulogic to --
-- signed std_logic --
-- 10/28/92 AMT added signed --
-- functions, -, ABS --
-- --
-- Purpose: --
-- A set of signed arithemtic, conversion, --
-- and comparision functions for STD_LOGIC_VECTOR. --
-- --
-- Note: Comparision of same length std_logic_vector --
-- is defined in the LRM. The interpretation --
-- is for unsigned vectors. This package --

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

498 Appendix G

-- will "overload" that definition. --
-- --

-- Attributes added to invoke MTI builtin functions

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

package STD_LOGIC_SIGNED is

 function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_plus_sss";

 function "+"(L: STD_LOGIC_VECTOR; R: INTEGER) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC_VECTOR, INTEGER return

STD_LOGIC_VECTOR]: function is "stdarith_plus_sis";

 function "+"(L: INTEGER; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[INTEGER, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_plus_iss";

 function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC_VECTOR, STD_LOGIC return

STD_LOGIC_VECTOR]: function is "stdarith_plus_sxs";

 function "+"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_plus_xss";

 function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]:function is "stdarith_minus_sss";

 function "-"(L: STD_LOGIC_VECTOR; R: INTEGER) return
STD_LOGIC_VECTOR;

STD_LOGIC SIGNED Package 499

 attribute builtin_subprogram of
 "-"[STD_LOGIC_VECTOR, INTEGER return

STD_LOGIC_VECTOR]:function is "stdarith_minus_sis";

 function "-"(L: INTEGER; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[INTEGER, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]:function is "stdarith_minus_iss";

 function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[STD_LOGIC_VECTOR, STD_LOGIC return

STD_LOGIC_VECTOR]:function is "stdarith_minus_sxs";

 function "-"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[STD_LOGIC, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]:function is "stdarith_minus_xss";

 function "+"(L: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC_VECTOR return STD_LOGIC_VECTOR]:
 function is "stdarith_unary_plus_ss";

 function "-"(L: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[STD_LOGIC_VECTOR return STD_LOGIC_VECTOR]:
 function is "stdarith_unary_minus_ss";

 function "ABS"(L: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "ABS"[STD_LOGIC_VECTOR return STD_LOGIC_VECTOR]:
 function is "stdarith_abs_ss";

 function "*"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "*"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_mult_sss";

 function "<"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of

500 Appendix G

 "<"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return
BOOLEAN]: function is "stdarith_lt_ss";

 function "<"(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 "<"[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_lt_si";

 function "<"(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 "<"[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_lt_is";

 function "<="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 "<="[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_lte_ss";

 function "<="(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 "<="[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_lte_si";

 function "<="(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 "<="[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_lte_is";

 function ">"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 ">"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_gt_ss";

 function ">"(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 ">"[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_gt_si";

 function ">"(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 ">"[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_gt_is";

STD_LOGIC SIGNED Package 501

 function ">="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 ">="[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_gte_ss";

 function ">="(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 ">="[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_gte_si";

 function ">="(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 ">="[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_gte_is";

 function "="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 "="[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_eq_ss";

 function "="(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 "="[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_eq_si";

 function "="(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 "="[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_eq_is";

 function "/="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 "/="[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_neq_ss";

 function "/="(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 "/="[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_neq_si";

 function "/="(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

502 Appendix G

 attribute builtin_subprogram of
 "/="[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_neq_is";

 function SHL(ARG:STD_LOGIC_VECTOR;COUNT:
STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 SHL[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_shl_sus";

 function SHR(ARG:STD_LOGIC_VECTOR;COUNT:
STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 SHR[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_shr_sus";

 function CONV_INTEGER(ARG: STD_LOGIC_VECTOR) return
INTEGER;

 attribute builtin_subprogram of
 CONV_INTEGER[STD_LOGIC_VECTOR return INTEGER]:
 function is "stdarith_conv_integer_si";

-- remove this since it is already in std_logic_arith
-- function CONV_STD_LOGIC_VECTOR(ARG: INTEGER; SIZE:
-- INTEGER) return STD_LOGIC_VECTOR;

end STD_LOGIC_SIGNED;

503

H STD_LOGIC_UNSIGNED

This appendix shows the Std_Logic Unsigned package. All designs
using this package must use the LIBRARY IEEE; and USE
IEEE.std_logic_unsigned.ALL; statements for making this package
and its contents accessible.

-- --
-- Copyright (c) 1990, 1991, 1992 by Synopsys, Inc. --
-- All rights reserved. --
-- --
-- This source file may be used and distributed without --
-- restriction provided that this copyright statement --
-- is not removed from the file and that any derivative --
-- work contains this copyright notice. --
-- --
-- Package name: STD_LOGIC_UNSIGNED --
-- --
-- --
-- Date: 09/11/92 KN --
-- 10/08/92 AMT --
-- --
-- Purpose: --
-- A set of unsigned arithmetic, conversion, --
-- and comparison functions for STD_LOGIC_VECTOR. --
-- --
-- Note: Comparision of same length discrete arrays --
-- is defined in the LRM. This package --
-- will "overload" that definition. --
-- --

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

504 Appendix H

-- Attributes added to invoke MTI builtin functions

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

package STD_LOGIC_UNSIGNED is

 attribute builtin_subprogram: string;

 function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_plus_uuu";

 function "+"(L: STD_LOGIC_VECTOR; R: INTEGER) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC_VECTOR, INTEGER return

STD_LOGIC_VECTOR]: function is "stdarith_plus_uiu";

 function "+"(L: INTEGER; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[INTEGER, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_plus_iuu";

 function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC_VECTOR, STD_LOGIC return

STD_LOGIC_VECTOR]: function is "stdarith_plus_uxu";

 function "+"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_plus_xuu";

 function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]:function is "stdarith_minus_uuu";

 function "-"(L: STD_LOGIC_VECTOR; R: INTEGER) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[STD_LOGIC_VECTOR, INTEGER return

STD_LOGIC UNSIGNED Package 505

STD_LOGIC_VECTOR]:function is "stdarith_minus_uiu";

 function "-"(L: INTEGER; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[INTEGER, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]:function is "stdarith_minus_iuu";

 function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[STD_LOGIC_VECTOR, STD_LOGIC return

STD_LOGIC_VECTOR]:function is "stdarith_minus_uxu";

 function "-"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "-"[STD_LOGIC, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]:function is "stdarith_minus_xuu";

 function "+"(L: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "+"[STD_LOGIC_VECTOR return STD_LOGIC_VECTOR]:
 function is "stdarith_unary_plus_uu";

 function "*"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 "*"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_mult_uuu";

 function "<"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 "<"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_lt_uu";

 function "<"(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 "<"[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_lt_ui";

 function "<"(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 "<"[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_lt_iu";

506 Appendix H

 function "<="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 "<="[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_lte_uu";

 function "<="(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 "<="[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_lte_ui";

 function "<="(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 "<="[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_lte_iu";

 function ">"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 ">"[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_gt_uu";

 function ">"(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 ">"[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_gt_ui";

 function ">"(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 ">"[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_gt_iu";

 function ">="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 ">="[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_gte_uu";

 function ">="(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 ">="[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_gte_ui";

 function ">="(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

STD_LOGIC UNSIGNED Package 507

 attribute builtin_subprogram of
 ">="[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_gte_iu";

 function "="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 "="[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_eq_uu";

 function "="(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 "="[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_eq_ui";

 function "="(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 "="[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_eq_iu";

 function "/="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)
return BOOLEAN;

 attribute builtin_subprogram of
 "/="[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

BOOLEAN]: function is "stdarith_neq_uu";

 function "/="(L: STD_LOGIC_VECTOR; R: INTEGER) return
BOOLEAN;

 attribute builtin_subprogram of
 "/="[STD_LOGIC_VECTOR, INTEGER return BOOLEAN]:
 function is "stdarith_neq_ui";

 function "/="(L: INTEGER; R: STD_LOGIC_VECTOR) return
BOOLEAN;

 attribute builtin_subprogram of
 "/="[INTEGER, STD_LOGIC_VECTOR return BOOLEAN]:
 function is "stdarith_neq_iu";

 function SHL(ARG:STD_LOGIC_VECTOR;COUNT:
STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 SHL[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_shl_uuu";

 function SHR(ARG:STD_LOGIC_VECTOR;COUNT:
STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

 attribute builtin_subprogram of
 SHR[STD_LOGIC_VECTOR, STD_LOGIC_VECTOR return

STD_LOGIC_VECTOR]: function is "stdarith_shr_uuu";

508 Appendix H

 function CONV_INTEGER(ARG: STD_LOGIC_VECTOR) return
INTEGER;

 attribute builtin_subprogram of
 CONV_INTEGER[STD_LOGIC_VECTOR return INTEGER]:
 function is "stdarith_conv_integer_ui2";

-- If desired, you may select an optional implementation
-- for CONV_INTEGER(STD_LOGIC_VECTOR)
-- by changing the value of the attribute:
-- stdarith_conv_integer_ui implements the original
-- CONV_INTEGER(STD_LOGIC_VECTOR) VHDL which
-- generates an error if the argument is larger
-- than 31 bits.
-- stdarith_conv_integer_ui2 allows 32 bits. It
-- generates a warning if the
-- argument is 32 bits and the MSB is not zero.
-- The default is stdarith_conv_integer_ui2.
--
-- attribute builtin_subprogram of
-- CONV_INTEGER[STD_LOGIC_VECTOR return INTEGER]:
-- function is "stdarith_conv_integer_ui";

-- remove this since it is already in std_logic_arith
-- function CONV_STD_LOGIC_VECTOR(ARG: INTEGER; SIZE:
-- INTEGER) return STD_LOGIC_VECTOR;

end STD_LOGIC_UNSIGNED;

509

Imath_real Package

This appendix shows the math_real package. All designs using this
package must use the LIBRARY IEEE; and USE
IEEE.math_real.ALL; statements for making this package and its
contents accessible.

--
-- Copyright 1996 by IEEE. All rights reserved.
--
-- This source file is an essential part of IEEE Std
-- 1076.2-1996, IEEE Standard VHDL Mathematical Packages.
-- This source file may not be copied, sold, or included
-- with software that is sold without written permission
-- from the IEEE Standards Department. This source file may
-- be used to implement this standard and may be
-- distributed in compiled form in any manner so long as
-- the compiled form does not allow direct decompilation of
-- the original source file.
-- This source file may be copied for individual use be
-- tween licensed users. This source file is provided on an
-- AS IS basis. The IEEE disclaims ANY WARRANTY EXPRESS OR
-- IMPLIED INCLUDING ANY WARRANTY OF MERCHANTABILITY AND
-- FITNESS FOR USE FOR A PARTICULAR PURPOSE. The user of
-- the source file shall indemnify and hold IEEE harmless
-- from any damages or liability arising out of the use
-- thereof.
--
-- Title: Standard VHDL Mathematical Packages (IEEE
-- Std 1076.2-1996, MATH_REAL)
--
-- Library: This package shall be compiled into a

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

510 Appendix I

-- library symbolically named IEEE.
--
-- Developers: IEEE DASC VHDL Mathematical Packages
-- Working Group
--
-- Purpose: This package defines a standard for
-- designers to use in describing VHDL models
-- that make use of common REAL constants
-- and common REAL elementary mathematical
-- functions.
--
-- Limitation: The values generated by the functions in
-- this package may vary from platform to
-- platform, and the precision of results
-- is only guaranteed to be the minimum
-- required by IEEE Std 1076-1993.
--
-- Notes:
-- No declarations or definitions shall be
-- included in, or excluded from,this package.
-- The "package declaration" defines the
-- types, subtypes, and declarations of
-- MATH_REAL.
-- The standard mathematical definition and
-- conventional meaning of the mathematical
-- functions that are part of this standard
-- represent the formal semantics of the
-- implementation of the MATH_REAL package
-- declaration. The purpose of the MATH_REAL
-- package body is to provide a guideline for
-- implementations to verify their
-- implementation of MATH_REAL. Tool
-- developers may choose to implement the
-- package body in the most efficient
-- manner available to them.
--
-- --
-- Version : 1.5
-- Date : 24 July 1996
-- --
package MATH_REAL is
 constant CopyRightNotice: STRING
 := "Copyright 1996 IEEE. All rights reserved.";

 --
 -- Constant Definitions
 --
 constant MATH_E : REAL := 2.71828_18284_59045_23536;
 -- Value of e
 constant MATH_1_OVER_E : REAL :=

0.36787_94411_71442_32160;
 -- Value of 1/e
 constant MATH_PI : REAL := 3.14159_26535_89793_23846;

math_real Package 511

 -- Value of pi
 constant MATH_2_PI : REAL :=

6.28318_53071_79586_47693;
 -- Value of 2*pi
 constant MATH_1_OVER_PI : REAL :=

0.31830_98861_83790_67154;
 -- Value of 1/pi
 constant MATH_PI_OVER_2 : REAL :=

1.57079_63267_94896_61923;
 -- Value of pi/2
 constant MATH_PI_OVER_3 : REAL :=

1.04719_75511_96597_74615;
 -- Value of pi/3
 constant MATH_PI_OVER_4 : REAL :=

0.78539_81633_97448_30962;
 -- Value of pi/4
 constant MATH_3_PI_OVER_2 : REAL :=

4.71238_89803_84689_85769;
 -- Value 3*pi/2
 constant MATH_LOG_OF_2 : REAL :=

0.69314_71805_59945_30942;
 -- Natural log of 2
 constant MATH_LOG_OF_10 : REAL :=

2.30258_50929_94045_68402;
 -- Natural log of 10
 constant MATH_LOG2_OF_E : REAL :=

1.44269_50408_88963_4074;
 -- Log base 2 of e
 constant MATH_LOG10_OF_E: REAL :=

0.43429_44819_03251_82765;
 -- Log base 10 of e
 constant MATH_SQRT_2: REAL :=

1.41421_35623_73095_04880;
 -- square root of 2
 constant MATH_1_OVER_SQRT_2: REAL :=

0.70710_67811_86547_52440;
 -- square root of 1/2
 constant MATH_SQRT_PI: REAL :=

1.77245_38509_05516_02730;
 -- square root of pi
 constant MATH_DEG_TO_RAD: REAL :=

0.01745_32925_19943_29577;
 -- Conversion factor from degree to radian
 constant MATH_RAD_TO_DEG: REAL :=

57.29577_95130_82320_87680;
 -- Conversion factor from radian to degree

 --
 -- Function Declarations
 --
 function SIGN (X: in REAL) return REAL;
 -- Purpose:
 -- Returns 1.0 if X > 0.0; 0.0 if X = 0.0;

512 Appendix I

-- 1.0 if X < 0.0
 -- Special values:
 -- None
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- ABS(SIGN(X)) <= 1.0
 -- Notes:
 -- None

 function CEIL (X : in REAL) return REAL;
 -- Purpose:
 -- Returns smallest INTEGER value (as REAL)

-- not less than X
 -- Special values:
 -- None
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- CEIL(X) is mathematically unbounded
 -- Notes:
 -- a) Implementations have to support at

-- least the domain
-- ABS(X) < REAL(INTEGER'HIGH)

 function FLOOR (X : in REAL) return REAL;
 -- Purpose:
 -- Returns largest INTEGER value (as REAL)

-- not greater than X
 -- Special values:
 -- FLOOR(0.0) = 0.0
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- FLOOR(X) is mathematically unbounded
 -- Notes:
 -- a) Implementations have to support at

-- least the domain
 -- ABS(X) < REAL(INTEGER'HIGH)

 function ROUND (X : in REAL) return REAL;
 -- Purpose:
 -- Rounds X to the nearest integer value

-- (as real). If X is halfway between two
-- integers, rounding is away from 0.0

 -- Special values:
 -- ROUND(0.0) = 0.0

math_real Package 513

 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- ROUND(X) is mathematically unbounded
 -- Notes:
 -- a) Implementations have to support at

-- least the domain
 -- ABS(X) < REAL(INTEGER'HIGH)

 function TRUNC (X : in REAL) return REAL;
 -- Purpose:
 -- Truncates X towards 0.0 and returns

-- truncated value
 -- Special values:
 -- TRUNC(0.0) = 0.0
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- TRUNC(X) is mathematically unbounded
 -- Notes:
 -- a) Implementations have to support at

-- least the domain
 -- ABS(X) < REAL(INTEGER'HIGH)

 function "MOD" (X, Y: in REAL) return REAL;
 -- Purpose:
 -- Returns floating point modulus of X/Y,

-- with the same sign as Y, and absolute
-- value less than the absolute value of Y,
-- and for some INTEGER value N the result
-- satisfies the relation

 -- X = Y*N + MOD(X,Y)
 -- Special values:
 -- None
 -- Domain:
 -- X in REAL; Y in REAL and Y /= 0.0
 -- Error conditions:
 -- Error if Y = 0.0
 -- Range:
 -- ABS(MOD(X,Y)) < ABS(Y)
 -- Notes:
 -- None

 function REALMAX (X, Y : in REAL) return REAL;
 -- Purpose:
 -- Returns the algebraically larger of X

-- and Y
 -- Special values:
 -- REALMAX(X,Y) = X when X = Y

514 Appendix I

 -- Domain:
 -- X in REAL; Y in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- REALMAX(X,Y) is mathematically unbounded
 -- Notes:
 -- None

 function REALMIN (X, Y : in REAL) return REAL;
 -- Purpose:
 -- Returns the algebraically smaller of X

-- and Y
 -- Special values:
 -- REALMIN(X,Y) = X when X = Y
 -- Domain:
 -- X in REAL; Y in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- REALMIN(X,Y) is mathematically unbounded
 -- Notes:
 -- None

 procedure UNIFORM(variable SEED1,SEED2:inout POSITIVE;
variable X:out REAL);

 -- Purpose:
 -- Returns, in X, a pseudo-random number

-- with uniform distribution in the open
-- interval (0.0, 1.0).

 -- Special values:
 -- None
 -- Domain:
 -- 1 <= SEED1 <= 2147483562;

-- 1 <= SEED2 <= 2147483398
 -- Error conditions:
 -- Error if SEED1 or SEED2 outside of valid
domain
 -- Range:
 -- 0.0 < X < 1.0
 -- Notes:
 -- a) The semantics for this function are

-- described by the algorithm published
-- by Pierre L'Ecuyer in "Communications

 -- of the ACM," vol. 31, no. 6, June
-- 1988, pp. 742-774. The algorithm is
-- based on the combination of two

 -- multiplicative linear congruential
-- generators for 32-bit platforms.

 --
 -- b) Before the first call to UNIFORM, the

-- seed values (SEED1, SEED2) have to be
-- initialized to values in the range

math_real Package 515

 -- [1, 2147483562] and [1, 2147483398]
-- respectively. The seed values are
-- modified after each call to UNIFORM.

 --
 -- c) This random number generator is port

-- able for 32-bit computers, and it has
-- a period of ~2.30584*(10**18) for
-- each set of seed values.

 --
 -- d) For information on spectral tests for

-- the algorithm, refer to the L'Ecuyer
-- article.

 function SQRT (X : in REAL) return REAL;
 -- Purpose:
 -- Returns square root of X
 -- Special values:
 -- SQRT(0.0) = 0.0
 -- SQRT(1.0) = 1.0
 -- Domain:
 -- X >= 0.0
 -- Error conditions:
 -- Error if X < 0.0
 -- Range:
 -- SQRT(X) >= 0.0
 -- Notes:
 -- a) The upper bound of the reachable

-- range of SQRT is approximately given
-- by:

 -- SQRT(X) <= SQRT(REAL'HIGH)

 function CBRT (X : in REAL) return REAL;
 -- Purpose:
 -- Returns cube root of X
 -- Special values:
 -- CBRT(0.0) = 0.0
 -- CBRT(1.0) = 1.0
 -- CBRT(-1.0) = -1.0
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- CBRT(X) is mathematically unbounded
 -- Notes:
 -- a) The reachable range of CBRT is

-- approximately given by:
 -- ABS(CBRT(X)) <= CBRT(REAL'HIGH)

 function "**" (X : in INTEGER; Y : in REAL) return
REAL;

 -- Purpose:
 -- Returns Y power of X ==> X**Y

516 Appendix I

 -- Special values:
 -- X**0.0 = 1.0; X /= 0
 -- 0**Y = 0.0; Y > 0.0
 -- X**1.0 = REAL(X); X >= 0
 -- 1**Y = 1.0
 -- Domain:
 -- X > 0
 -- X = 0 for Y > 0.0
 -- X < 0 for Y = 0.0
 -- Error conditions:
 -- Error if X < 0 and Y /= 0.0
 -- Error if X = 0 and Y <= 0.0
 -- Range:
 -- X**Y >= 0.0
 -- Notes:
 -- a) The upper bound of the reachable

-- range for "**" is approximately given
-- by:

 -- X**Y <= REAL'HIGH

 function "**" (X : in REAL; Y : in REAL) return REAL;
 -- Purpose:
 -- Returns Y power of X ==> X**Y
 -- Special values:
 -- X**0.0 = 1.0; X /= 0.0
 -- 0.0**Y = 0.0; Y > 0.0
 -- X**1.0 = X; X >= 0.0
 -- 1.0**Y = 1.0
 -- Domain:
 -- X > 0.0
 -- X = 0.0 for Y > 0.0
 -- X < 0.0 for Y = 0.0
 -- Error conditions:
 -- Error if X < 0.0 and Y /= 0.0
 -- Error if X = 0.0 and Y <= 0.0
 -- Range:
 -- X**Y >= 0.0
 -- Notes:
 -- a) The upper bound of the reachable

-- range for "**" is approximately given
-- by:

 -- X**Y <= REAL'HIGH

 function EXP (X : in REAL) return REAL;
 -- Purpose:
 -- Returns e**X; where e = MATH_E
 -- Special values:
 -- EXP(0.0) = 1.0
 -- EXP(1.0) = MATH_E
 -- EXP(-1.0) = MATH_1_OVER_E
 -- EXP(X) = 0.0 for X <= -LOG(REAL'HIGH)
 -- Domain:
 -- X in REAL such that EXP(X) <= REAL'HIGH

math_real Package 517

 -- Error conditions:
 -- Error if X > LOG(REAL'HIGH)
 -- Range:
 -- EXP(X) >= 0.0
 -- Notes:
 -- a) The usable domain of EXP is approxi

-- mately given by:
 -- X <= LOG(REAL'HIGH)

 function LOG (X : in REAL) return REAL;
 -- Purpose:
 -- Returns natural logarithm of X
 -- Special values:
 -- LOG(1.0) = 0.0
 -- LOG(MATH_E) = 1.0
 -- Domain:
 -- X > 0.0
 -- Error conditions:
 -- Error if X <= 0.0
 -- Range:
 -- LOG(X) is mathematically unbounded
 -- Notes:
 -- a) The reachable range of LOG is ap

-- proximately given by:
 -- LOG(0+) <= LOG(X) <= LOG(REAL'HIGH)

 function LOG2 (X : in REAL) return REAL;
 -- Purpose:
 -- Returns logarithm base 2 of X
 -- Special values:
 -- LOG2(1.0) = 0.0
 -- LOG2(2.0) = 1.0
 -- Domain:
 -- X > 0.0
 -- Error conditions:
 -- Error if X <= 0.0
 -- Range:
 -- LOG2(X) is mathematically unbounded
 -- Notes:
 -- a)The reachable range of LOG2 is

-- approximately given by:
 -- LOG2(0+) <= LOG2(X) <= LOG2(REAL'HIGH)

 function LOG10 (X : in REAL) return REAL;
 -- Purpose:
 -- Returns logarithm base 10 of X
 -- Special values:
 -- LOG10(1.0) = 0.0
 -- LOG10(10.0) = 1.0
 -- Domain:
 -- X > 0.0
 -- Error conditions:
 -- Error if X <= 0.0

518 Appendix I

 -- Range:
 -- LOG10(X) is mathematically unbounded
 -- Notes:
 -- a) The reachable range of LOG10 is

-- approximately given by:
 -- LOG10(0+) <= LOG10(X) <= LOG10(REAL'HIGH)

 function LOG (X: in REAL; BASE: in REAL) return REAL;
 -- Purpose:
 -- Returns logarithm base BASE of X
 -- Special values:
 -- LOG(1.0, BASE) = 0.0
 -- LOG(BASE, BASE) = 1.0
 -- Domain:
 -- X > 0.0
 -- BASE > 0.0
 -- BASE /= 1.0
 -- Error conditions:
 -- Error if X <= 0.0
 -- Error if BASE <= 0.0
 -- Error if BASE = 1.0
 -- Range:
 -- LOG(X, BASE) is mathematically unbounded
 -- Notes:
 -- a) When BASE > 1.0, the reachable range

-- of LOG is approximately given by:
 -- LOG(0+, BASE) <= LOG(X, BASE) <=

-- LOG(REAL'HIGH, BASE)
 -- b) When 0.0 < BASE < 1.0, the reachable

-- range of LOG is approximately given
-- by:

 -- LOG(REAL'HIGH, BASE) <= LOG(X, BASE)
-- <= LOG(0+, BASE)

 function SIN (X : in REAL) return REAL;
 -- Purpose:
 -- Returns sine of X; X in radians
 -- Special values:
 -- SIN(X) = 0.0 for X = k*MATH_PI, where k

-- is an INTEGER SIN(X) = 1.0 for X =
-- (4*k+1)*MATH_PI_OVER_2, where k is an

 -- INTEGER
 -- SIN(X) = -1.0 for X =

-- (4*k+3)*MATH_PI_OVER_2, where k is an
 -- INTEGER
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- ABS(SIN(X)) <= 1.0
 -- Notes:
 -- a) For larger values of ABS(X), degraded

math_real Package 519

-- accuracy is allowed.

 function COS (X : in REAL) return REAL;
 -- Purpose:
 -- Returns cosine of X; X in radians
 -- Special values:
 -- COS(X) = 0.0 for X =

-- (2*k+1)*MATH_PI_OVER_2, where k is an
 -- INTEGER
 -- COS(X) = 1.0 for X = (2*k)*MATH_PI,

-- where k is an INTEGER
 -- COS(X) = -1.0 for X = (2*k+1)*MATH_PI,

-- where k is an INTEGER
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- ABS(COS(X)) <= 1.0
 -- Notes:
 -- a) For larger values of ABS(X), degraded

-- accuracy is allowed.

 function TAN (X : in REAL) return REAL;
 -- Purpose:
 -- Returns tangent of X; X in radians
 -- Special values:
 -- TAN(X) = 0.0 for X = k*MATH_PI, where k

-- is an INTEGER
 -- Domain:
 -- X in REAL and
 -- X /= (2*k+1)*MATH_PI_OVER_2, where k is

-- an INTEGER
 -- Error conditions:
 -- Error if X = ((2*k+1) * MATH_PI_OVER_2),

-- where k is an INTEGER
 -- Range:
 -- TAN(X) is mathematically unbounded
 -- Notes:
 -- a) For larger values of ABS(X), degraded

-- accuracy is allowed.

 function ARCSIN (X : in REAL) return REAL;
 -- Purpose:
 -- Returns inverse sine of X
 -- Special values:
 -- ARCSIN(0.0) = 0.0
 -- ARCSIN(1.0) = MATH_PI_OVER_2
 -- ARCSIN(-1.0) = -MATH_PI_OVER_2
 -- Domain:
 -- ABS(X) <= 1.0
 -- Error conditions:
 -- Error if ABS(X) > 1.0

520 Appendix I

 -- Range:
 -- ABS(ARCSIN(X) <= MATH_PI_OVER_2
 -- Notes:
 -- None

 function ARCCOS (X : in REAL) return REAL;
 -- Purpose:
 -- Returns inverse cosine of X
 -- Special values:
 -- ARCCOS(1.0) = 0.0
 -- ARCCOS(0.0) = MATH_PI_OVER_2
 -- ARCCOS(-1.0) = MATH_PI
 -- Domain:
 -- ABS(X) <= 1.0
 -- Error conditions:
 -- Error if ABS(X) > 1.0
 -- Range:
 -- 0.0 <= ARCCOS(X) <= MATH_PI
 -- Notes:
 -- None

 function ARCTAN (Y : in REAL) return REAL;
 -- Purpose:
 -- Returns the value of the angle in

-- radians of the point
 -- (1.0, Y), which is in rectangular

-- coordinates
 -- Special values:
 -- ARCTAN(0.0) = 0.0
 -- Domain:
 -- Y in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- ABS(ARCTAN(Y)) <= MATH_PI_OVER_2
 -- Notes:
 -- None

 function ARCTAN (Y : in REAL; X : in REAL) return
REAL;

 -- Purpose:
 -- Returns the principal value of the angle

-- in radians of the point (X, Y), which is
-- in rectangular coordinates

 -- Special values:
 -- ARCTAN(0.0, X) = 0.0 if X > 0.0
 -- ARCTAN(0.0, X) = MATH_PI if X < 0.0
 -- ARCTAN(Y, 0.0)=MATH_PI_OVER_2 if Y > 0.0
 -- ARCTAN(Y,0.0)=-MATH_PI_OVER_2 if Y < 0.0
 -- Domain:
 -- Y in REAL
 -- X in REAL, X /= 0.0 when Y = 0.0
 -- Error conditions:

math_real Package 521

 -- Error if X = 0.0 and Y = 0.0
 -- Range:
 -- -MATH_PI < ARCTAN(Y,X) <= MATH_PI
 -- Notes:
 -- None

 function SINH (X : in REAL) return REAL;
 -- Purpose:
 -- Returns hyperbolic sine of X
 -- Special values:
 -- SINH(0.0) = 0.0
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- SINH(X) is mathematically unbounded
 -- Notes:
 -- a) The usable domain of SINH is approxi

-- mately given by:
 -- ABS(X) <= LOG(REAL'HIGH)

 function COSH (X : in REAL) return REAL;
 -- Purpose:
 -- Returns hyperbolic cosine of X
 -- Special values:
 -- COSH(0.0) = 1.0
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- COSH(X) >= 1.0
 -- Notes:
 -- a) The usable domain of COSH is

-- approximately given by:
 -- ABS(X) <= LOG(REAL'HIGH)

 function TANH (X : in REAL) return REAL;
 -- Purpose:
 -- Returns hyperbolic tangent of X
 -- Special values:
 -- TANH(0.0) = 0.0
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- ABS(TANH(X)) <= 1.0
 -- Notes:
 -- None

522 Appendix I

 function ARCSINH (X : in REAL) return REAL;
 -- Purpose:
 -- Returns inverse hyperbolic sine of X
 -- Special values:
 -- ARCSINH(0.0) = 0.0
 -- Domain:
 -- X in REAL
 -- Error conditions:
 -- None
 -- Range:
 -- ARCSINH(X) is mathematically unbounded
 -- Notes:
 -- a) The reachable range of ARCSINH is

-- approximately given by:
 -- ABS(ARCSINH(X)) <= LOG(REAL'HIGH)

 function ARCCOSH (X : in REAL) return REAL;
 -- Purpose:
 -- Returns inverse hyperbolic cosine of X
 -- Special values:
 -- ARCCOSH(1.0) = 0.0
 -- Domain:
 -- X >= 1.0
 -- Error conditions:
 -- Error if X < 1.0
 -- Range:
 -- ARCCOSH(X) >= 0.0
 -- Notes:
 -- a) The upper bound of the reachable

-- range of ARCCOSH is approximately
-- given by:
-- ARCCOSH(X) <= LOG(REAL'HIGH)

 function ARCTANH (X : in REAL) return REAL;
 -- Purpose:
 -- Returns inverse hyperbolic tangent of X
 -- Special values:
 -- ARCTANH(0.0) = 0.0
 -- Domain:
 -- ABS(X) < 1.0
 -- Error conditions:
 -- Error if ABS(X) >= 1.0
 -- Range:
 -- ARCTANH(X) is mathematically unbounded
 -- Notes:
 -- a) The reachable range of ARCTANH is

-- approximately given by:
 -- ABS(ARCTANH(X)) < LOG(REAL'HIGH)

end MATH_REAL;

523

Index

, 46, 72, 126, 208, 238
‘ACTIVE, 208
‘ASCENDING, 208
‘DELAYED, 208
‘DRIVING, 212
‘DRIVING_VALUE, 212
‘EVENT, 208
‘HIGH, 206, 208
‘IMAGE, 132, 208, 353
‘INSTANCE_NAME, 213
‘LAST_ACTIVE, 208
‘LAST_EVENT, 208
‘LAST_VALUE, 208
‘LEFT, 206, 208
‘LEFTOF, 207, 208
‘LENGTH, 136, 141
‘LOW, 208
‘PATH_NAME, 213
‘POS, 208
‘PRED, 207, 208
‘QUIET, 208
‘RANGE, 138, 178, 206, 280
‘REVERSE_RANGE, 138, 141
‘RIGHT, 206, 208
‘RIGHTOF, 207, 208
‘SIMPLE_NAME, 213
‘STABLE, 112, 208
‘SUCC, 207, 208
‘TRANSACTION, 208

‘VAL, 207, 208
‘VALUE, 208
9-value type, 268

a hardware programming
language, 16

ABS, 190
ACCESS, 198
access type, 302, 303
accumulator, 324
actual parameter, 177, 178
actual port, 43
adder, 41
AddingCPU, 327
AFTER, 106
AFTER clause, 230
aggregate operation, 173, 190
AHPL. See a hardware

programming language
alias declaration, 197
ALL, 83
Altera, 19, 37
ALU, 42, 329, 345
ALU test, 345
analysis, 68
analyzer, 21
AND, 39
arbitrary test data, 347
architecture, 25

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.

524 Index

body, 25, 41, 79, 163
declaration, 25

ARCHITECTURE, 25
architecture declarative part,

86
arithmetic logic unit, 397
arithmetic shift, 188
array aggregate, 171
array attribute, 206
array element, 170
array multiplier, 305, 306
array slice, 172
array type, 170, 172, 174, 203
ASCII, 182
assembler, 422
assert statement, 155
assertion monitor, 10
assertion statement, 154, 274
association by name, 43, 89
association by position, 43, 89
asynchronous, 57, 129, 279
asynchronous control, 56
asynchronous reset, 281, 290
asynchronous set, 57
attribute, 206, 208, 210
attribute specification, 215

base unit declaration, 167
BEGIN, 26, 79
bidirectional, 266, 280, 315,

325, 345, 362
BIST, 383
BIST architecture, 385
BIST test session, 388
BIT, 29
BIT_VECTOR, 28
BLOCK, 112
block configuration, 96, 99
block declarative part, 113
block header, 113
block label, 112
block PORT, 114
block PORT MAP, 114
block statement, 112, 278
block statement port, 114

block-declarative-item, 86
Booth algorithm, 311, 312
Booth multiplier, 311
BUFFER, 28, 78, 79
buffered data testbench, 358
bus, 68, 326
BUS, 116, 264
Bus kind resolved signal, 264
bussing, 49

C/C++, 4, 5
carry-lookahead, 309
carry-lookahead adder, 305
CASE, 153
case expression, 48
case statement, 41, 48, 49,

125, 153, 285, 287, 321
case statement alternative,

153
CDL. See computer design

language
choices, 109
circuit under test, 343
circular FIFO, 297
class, 71
clocked memory, 299
closely related type, 167, 203,

268
code coverage, 343
combinational block, 415
combinational circuit, 274
compare, 42
component configuration, 95,

96, 99
component declaration, 83, 84
component instantiation, 35
components library, 144
components package, 149
composite type, 195
computer design language, 16
concatenation, 42, 174, 190
concatenation operator, 60,

189
concurrency, 70, 202, 229, 233,

240

Index 525

concurrent assertion
statement, 156

concurrent assignment, 30
concurrent block, 112
concurrent body, 70
concurrent model, 230
concurrent procedure call, 138,

142
concurrent signal assignment,

30, 105
conditional, 42
conditional signal assignment,

41, 48, 107, 108, 164, 281
conditional_waveform, 107
configuration declaration, 84,

94, 95, 99
configuration specification, 83,

84, 91
CONLAN. See CONsensus

LANguage
CONsensus LANguage, 16
constant class, 72
constant declaration, 169
control signal, 415
control-data partitioning, 314
controllability, 373, 377
controller, 316, 320, 325, 332
counter, 60
coverage, 343
current simulation time, 344
current transaction, 236
CUT. See circuit under test
Cyclone, 19, 37, 38, 44, 50, 61,

64, 314

data application, 382
datapath, 316, 318, 324
DEALLOCATE, 200
declarative part, 27
decode, 401
decoder, 41, 111
default initial value, 165, 170
default library, 83
delay modeling., 227
delta, 125, 230, 239, 240, 261

delta delay, 46, 72, 238
design, 68
design coverage, 343
design partitioning, 314
design test, 341
design under test, 342
direct component

instantiation, 81
direct instantiation, 43, 81,

100
DISCONNECT, 118
disconnection, 117, 263
disconnection time, 119
DoD, 20
DOWNTO, 28
driving value, 202
DUT. See design under test
dynamic FIFO, 301, 303

edge detection, 210
edge trigger, 210
elaboration, 70, 235
Electronic System Level, 2
ELSE, 40, 107
ELSIF, 47
embedded core, 428
embedded processor, 395
embedded system, 395
END, 26, 79
END IF, 47, 150
ENDFILE, 183, 217
entity, 25

declaration, 25, 27
ENTITY, 25, 81
entity attribute, 205, 213
entity class, 213, 214, 215
entity declaration, 78, 85, 163
enumeration element, 162,

165, 175, 176, 187, 195, 204,
206, 207

enumeration type, 162, 165,
170, 175, 176, 187, 195, 196,
204, 207, 284, 287

ERROR, 154

526 Index

ESL. See Electronic System
Level

event, 234
event driven, 70
execute, 401
exit statement, 152
expected response, 380
expected result, 364
expired transaction, 252
explicit type conversion, 167,

204
expression, 106

FAILURE, 154
falling_edge, 222, 280
fault coverage, 371, 372
fault model, 371
fault simulation, 372
fetch, 401
field programmable logic

device, 5
FIFO, 292, 297, 301, 302, 304
file class, 72
file declaration, 181, 182
file object, 185
file open statement, 183
file statement, 220
file type, 181, 183
FILE_CLOSE, 183
FILE_OPEN, 183
FILE_OPEN_STATUS, 182
filter coefficient, 429
finite-state machine, 283
FIR filter, 395, 428, 429, 430
flip-flop, 52, 53, 115, 134, 210
floating point, 167, 170
FOR, 83
for-loop statement, 136, 151
formal parameter, 135, 178
formal verification, 342
FPGA, 11, 13, 21, 37, 44, 50,

64, 314
FPLD, 6, 7, See field

programmable logic device
FSM. See finite state machine

full-adder, 307
function, 135
FUNCTION, 40
function designator, 135

gate level, 2
generate statement, 85, 98,

308
generic, 19
generic clause, 90
generic interface list, 93
generic map aspect, 92, 95
generic parameter, 90, 169
golden model, 372
GUARD, 111
guard expression, 112, 113,

211, 262, 263, 264, 279
GUARD signal, 111
GUARDED, 111
guarded assignment, 262
guarded signal, 262
guarded signal assignment,

111, 115, 262, 279

halt, 401
hardware core, 1
hardware description

language, 1
hardware/software codesign, 1
hazards, 8
high impedance, 50, 163, 191
HREAD, 367
Huffman model, 287, 332, 377

IDL. See interactive design
language

IEEE library, 69, 143, 204
IEEE standard, 188, 204
IF, 150
if generation scheme, 87
if statement, 27, 47, 125-126,

150
impulse response, 429
IN, 28, 78

Index 527

incomplete type declaration,
198

incremental configuration, 96
index range, 171
index variable, 136
indexing, 30
indexing block configuration,

99
inertial, 230, 245
INERTIAL, 231
inertial reject, 245
initial value, 46, 165, 170, 171,

175, 199, 204
initialization, 171, 175, 235
initializing objects, 124
INOUT, 28, 78
instruction input file, 366
instruction memory, 432
instruction register, 324, 397
instruction set processor

specification, 17
instruction translation, 422
intellectual property, 4
interactive design language,

16
interactive testbench, 355
interface signal declaration, 78
IP. See intellectual property
IS, 113
ISPS. See instruction set

processor specification

kind, 116, 264

label, 83
Language Reference Manual,

15
last disconnection, 264, 265
latch, 52, 53, 115, 274
latch avoidance, 278
level modeling, 301
LFSR, 93, 371, 373
library, 18, 69, 143
LIBRARY, 36
library clause, 144, 145

LINE, 218
linked list, 198, 199
logic value, 31
logical operator, 186
logical shift, 188
lookup-table, 57
loop label, 152
loop statement, 125, 140, 151
LRM. See Language Reference

Manual

magnitude comparator, 274
majority, 46
manufacturing test, 341, 371
math_real package, 348
Mealy machine, 285
memory, 65, 299
memory, file-based, 420
memory access, 417
memory BIST, 383
memory buffer, 421
memory handling, 419
memory mapped I/O, 430
memory model, 184, 421
memory structure, 55
memory swapping, 420

MISR, 371, 373, 375, 376, 377
MOD, 189
mode, 78, 182, 183, 210
Moore machine, 283, 377
multiple concurrent

assignments, 230
multiple drivers, 255
multiple driving values, 255,

256
multiplexer, 80, 118, 255
multiplier, 306
multiplier testbench, 365
multiplying operator, 189
multi-value logic, 110

named association, 171, 175,
176

nested blocks, 279

528 Index

nested generate statement,
374

NEW, 200
next statement, 152
NoC, 258, 301
non-guarded signal, 265
NOR, 52
NOTE, 154
NOW, 132, 344
NULL, 198
NUMERIC_BIT package, 217

object, 71
observability, 373, 377
opcode, 333
OPEN, 44, 93, 118, 182, 183
open statement, 182, 183
open verification library, 10
OR, 39
OTHERS, 49, 59, 109, 153,

171, 175, 176, 215, 275
OUT, 28, 78
overflow, 197
overload, 191
overloading, 191, 192
overwritten transaction, 246

package body, 145, 149
package declaration, 144, 149
parallel load, 60, 279
pass transistors, 255
passive process, 131
periodic test data, 348
physical design, 21
physical type, 167, 168, 169,

170, 192, 207
poly, 373, 375
polynomial, 93, 373
PORT, 28
port association, 89
port clause, 80, 90
port declaration, 27
PORT MAP, 91
port map aspect, 88, 92, 114
positional association, 171

positive edge, 278
post synthesis, 50
POSTPONED, 130
postponed process, 130
post-synthesis simulation, 14,

352
predefined attribute, 205
predefined type, 186, 187
pre-synthesis simulation, 11
pre-synthesis verification, 5
priority encoding, 432
procedure, 135, 137
process, 123
PROCESS, 27, 45, 124
process declarative part, 46,

124
process sensitivity list, 56
process statement, 45, 54, 123,

124, 125, 127, 129
process statement body, 48
process statement part, 46
program counter, 329, 397
program memory, 430
pseudo-random number, 348
pull-down, 166, 169
pull-up, 166, 169
pulse rejection, 252
pulse synchronizer, 64
pure function, 258
push-pop stack, 294

Quartus II, 13, 37, 44, 50, 64,
314

RAM test, 386
random function generator,

348
random test data, 348
random time, 351
range specification, 171, 172,

175, 177
READ, 183, 217
READLINE, 217
real time, 72
record aggregate, 190, 197

Index 529

record element, 196
register, 59
REGISTER, 116, 117, 264, 265
register clocking, 320
register file, 396, 397, 406
Register kind resolved signal,

264
register transfer level, 23
reject, 230
REJECT, 231
relational, 42
relational operator, 187
REM, 189
REPORT, 132, 154
resolution, 256, 257
resolution function, 32, 73,

234, 257, 258, 261, 266
resolved, 32, 268
resolved signal, 30, 73, 212,

259
response capturing, 382
return statement, 136
rising_edge, 222, 280
ROR, 139
rotate, 139
RT level, 8
RTL. See register transfer

level
RTL synthesis, 279
RTL view, 44, 64
Rule one of combinational

synthesis, 276
Rule two of combinational

synthesis, 276

sampling frequency, 429
SAYEH. See Simple

Architecture, Yet Enough
Hardware

SAYEH controller, 401, 412
SAYEH data components, 401
SAYEH datapath, 399, 409
SAYEH embedded processor,

428
SAYEH instruction, 424

SAYEH machine language,
430

SAYEH testbench, 419
scalar, 161, 167, 172, 187, 206
scan design, 377
scan register, 377, 379
scheduling, 73
seed, 93, 355, 373
selected signal assignment, 41,

109
selected waveform, 110
selected waveforms, 110
sensitive, 123, 229
sensitivity, 39, 54
sensitivity list, 127, 134, 276,

280, 282, 290
sequential assignment, 242
sequential block, 415
sequential body, 71, 123
sequential circuit synthesis.

280
sequential model, 230
sequential multiplier, 305,

314, 317
sequential procedure call, 138
sequential statement, 19, 125,

128, 136, 137, 150
sequentiality, 70, 228
setup and hold time, 20
seven segment display, 111
SEVERITY, 154
Shadow, 412
shadow instruction, 396
shared variable, 72, 202, 366
shift operation, 188
shift register, 345
shift-and-add multiplier, 314
shift-register, 59
signal, 29
SIGNAL, 30
signal assignment, 106, 126
signal assignment statement,

164
signal attribute, 208, 209, 210
signal class, 71, 208

530 Index

signature, 375
Simple Architecture, Yet

Enough Hardware, 396
simulation cycle, 46, 210
single stuck-at fault, 372
slicing, 30
stack, 292, 294, 295
STANDARD, 177
standard package, 69, 161
statement part, 27, 83, 124
status register, 397
STD library, 69, 143, 161
std_logic, 31, 32, 188, 204, 221,

268
std_logic_1164 package, 32, 69
std_logic_arith, 222
std_logic_signed, 223
std_logic_TEXTIO, 220
std_logic_unsigned, 41, 69, 222
std_logic_vector, 39, 222
std_ulogic, 221, 268
std_ulogic_vector, 222
STRING, 177, 214
stuck-at fault, 372
subprogram, 124, 190
subprograms, 135
subtype, 194, 195, 204, 208
synchronous, 134, 279
synchronous control, 56
synchronous reset, 280, 290
synchronous set, 55
synthesis, combinational, 276
synthesis, guarded block, 278
synthesis, process statement,

282
synthesis, sequential circuit,

282
synthesizable, 273, 301
synthesizable multiplier, 322

TEGAS. See TEst Generation
And Simulation

test data decoder, 384
test efficiency, 371
test generation, 372

TEst Generation And
Simulation, 17

test session, 385
test vector, 384
testability, 341, 371
testable, 373
testbench, 66, 101, 140, 342,

343, 345, 380
testbench, buffered data, 358
testbench, file handling, 371
testbench, interactive, 355
testbench, processor, 365
testbench, self-checking, 365
testbench, system, 362
testbench, TEXTIO, 382, 359
Texas Instruments Hardware

Description Language, 17
TEXT, 217
TEXTIO, 292
TEXTIO package, 69, 216, 217
TEXTIO std_logic, 220
TEXTIO testbench, 359
TEXTIO writing, 219
THEN, 150
three-state, 68
TI-HDL. See Texas

Instruments Hardware
Description Language

TIME, 79
TLM. See transaction level

modeling
transaction, 208, 234, 236,

238, 239, 254
transaction level modeling, 22,

301
transistor level, 2
transport, 230, 245, 254
TRANSPORT, 138
tri-state, 116, 330
type attribute, 207
type declaration, 162, 163,

172, 177, 181
type definition, 168
type indication, 175

Index 531

UNAFFECTED, 53, 108
unary operator, 186
unconstrained, 170, 177, 178,

179, 275
universal shift-register, 280
unwanted latch, 274
USE, 36
use clause, 168
use statement, 215
user-defined attribute, 214,

215, 216
utilities library, 144
utilities package, 149

v4l logic value system, 164
variable, 30
VARIABLE, 30
variable class, 72
Verilog compatible type, 177
VHDL, 1
VHSIC hardware description

language, 17
von Neumann, 322, 323

WAIT FOR, 132
WAIT forever, 132
WAIT ON, 132
wait statement, 66, 132
WAIT statement, 243
WAIT UNTIL, 132
WARNING, 154
waveform, 67, 106, 231
waveform element, 254
waveform_element, 106
WHEN, 40, 107, 153
while-loop, 139
window pointer, 397, 400, 406
wired-OR resolution, 260
wiring resolution function, 259
WORK library, 35, 69, 143
WRITE, 183, 217
WRITELINE, 217, 292

XOR, 38

ZEUS, 17

LICENSE AGREEMENT

THIS PRODUCT (THE “PRODUCT”) CONTAINS PROPRIETARY SOFTWARE, DATA AND INFORMATION
(INCLUDING DOCUMENTATION) OWNED BY THE McGRAW-HILL COMPANIES, INC (“McGRAW-HILL”)
AND ITS LICENSORS YOUR RIGHT TO USE THE PRODUCT IS GOVERNED BY THE TERMS AND
CONDITIONS OF THIS AGREEMENT
LICENSE: Throughout this License Agreement, “you” shall mean either the individual or the entity whose agent
opens this package You are granted a non-exclusive and non-transferable license to use the Product subject to the
following terms:
(i) If you have licensed a single user version of the Product, the Product may only be used on a single computer (i e ,
a single CPU) If you licensed and paid the fee applicable to a local area network or wide area network version of the
Product, you are subject to the terms of the following subparagraph (ii)
(ii) If you have licensed a local area network version, you may use the Product on unlimited workstations located in
one single building selected by you that is served by such local area network If you have licensed a wide area
network version, you may use the Product on unlimited workstations located in multiple buildings on the same site
selected by you that is served by such wide area network; provided, however, that any building will not be
considered located in the same site if it is more than five (5) miles away from any building included in such site In
addition, you may only use a local area or wide area network version of the Product on one single server If you wish
to use the Product on more than one server, you must obtain written authorization from McGraw-Hill and pay
additional fees
(iii) You may make one copy of the Product for back-up purposes only and you must maintain an accurate record as
to the location of the back-up at all times
COPYRIGHT; RESTRICTIONS ON USE AND TRANSFER: All rights (including copyright) in and to the
Product are owned by McGraw-Hill and its licensors You are the owner of the enclosed disc on which the Product is
recorded You may not use, copy, decompile, disassemble, reverse engineer, modify, reproduce, create derivative
works, transmit, distribute, sublicense, store in a database or retrieval system of any kind, rent or transfer the
Product, or any portion thereof, in any form or by any means (including electronically or otherwise) except as
expressly provided for in this License Agreement You must reproduce the copyright notices, trademark notices,
legends and logos of McGraw-Hill and its licensors that appear on the Product on the back-up copy of the Product
which you are permitted to make hereunder All rights in the Product not expressly granted herein are reserved by
McGraw-Hill and its licensors
TERM: This License Agreement is effective until terminated It will terminate if you fail to comply with any term or
condition of this License Agreement Upon termination, you are obligated to return to McGraw-Hill the Product
together with all copies thereof and to purge all copies of the Product included in any and all servers and computer
facilities
DISCLAIMER OF WARRANTY: THE PRODUCT AND THE BACK-UP COPY ARE LICENSED “AS IS ”
McGRAW-HILL, ITS LICENSORS AND THE AUTHORS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS
TO THE RESULTS TO BE OBTAINED BY ANY PERSON OR ENTITY FROM USE OF THE PRODUCT, ANY
INFORMATION OR DATA INCLUDED THEREIN AND/OR ANY TECHNICAL SUPPORT SERVICES PROVIDED
HEREUNDER, IF ANY (“TECHNICAL SUPPORT SERVICES”) McGRAW-HILL, ITS LICENSORS AND THE
AUTHORS MAKE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE OR USE WITH RESPECT TO THE PRODUCT McGRAW-HILL, ITS LICENSORS, AND
THE AUTHORS MAKE NO GUARANTEE THAT YOU WILL PASS ANY CERTIFICATION EXAM WHATSOEVER
BY USING THIS PRODUCT NEITHER McGRAW-HILL, ANY OF ITS LICENSORS NOR THE AUTHORS
WARRANT THAT THE FUNCTIONS CONTAINED IN THE PRODUCT WILL MEET YOUR REQUIREMENTS
OR THAT THE OPERATION OF THE PRODUCT WILL BE UNINTERRUPTED OR ERROR FREE YOU
ASSUME THE ENTIRE RISK WITH RESPECT TO THE QUALITY AND PERFORMANCE OF THE PRODUCT
LIMITED WARRANTY FOR DISC: To the original licensee only, McGraw-Hill warrants that the enclosed disc on
which the Product is recorded is free from defects in materials and workmanship under normal use and service for a
period of ninety (90) days from the date of purchase In the event of a defect in the disc covered by the foregoing
warranty, McGraw-Hill will replace the disc
LIMITATION OF LIABILITY: NEITHER McGRAW-HILL, ITS LICENSORS NOR THE AUTHORS SHALL BE
LIABLE FOR ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, SUCH AS BUT NOT LIMITED TO,
LOSS OF ANTICIPATED PROFITS OR BENEFITS, RESULTING FROM THE USE OR INABILITY TO USE THE
PRODUCT EVEN IF ANY OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES THIS
LIMITATION OF LIABILITY SHALL APPLY TO ANY CLAIM OR CAUSE WHATSOEVER WHETHER SUCH
CLAIM OR CAUSE ARISES IN CONTRACT, TORT, OR OTHERWISE Some states do not allow the exclusion or
limitation of indirect, special or consequential damages, so the above limitation may not apply to you
U.S. GOVERNMENT RESTRICTED RIGHTS: Any software included in the Product is provided with restricted
rights subject to subparagraphs (c), (1) and (2) of the Commercial Computer Software-Restricted Rights clause at 48
C F R 52 227-19 The terms of this Agreement applicable to the use of the data in the Product are those under
which the data are generally made available to the general public by McGraw-Hill Except as provided herein, no
reproduction, use, or disclosure rights are granted with respect to the data included in the Product and no right to
modify or create derivative works from any such data is hereby granted
GENERAL: This License Agreement constitutes the entire agreement between the parties relating to the Product
The terms of any Purchase Order shall have no effect on the terms of this License Agreement Failure of McGraw-
Hill to insist at any time on strict compliance with this License Agreement shall not constitute a waiver of any
rights under this License Agreement This License Agreement shall be construed and governed in accordance with
the laws of the State of New York If any provision of this License Agreement is held to be contrary to law, that
provision will be enforced to the maximum extent permissible and the remaining provisions will remain in full force
and effect

	Copyright © 2007 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Preface:
	Introduction:
	Acknowledgments:
	Chapters:
	Chapter 1 Digital System Design Automation with VHDL:
	1:
	1 Abstraction Levels:
	2 System Level Design Flow:
	2:
	1 Hardware/Software Partitioning:
	2 Hardware Part:
	3 Software Part:

	3 RTL Design Flow:
	3:
	1 Design Entry:
	2 Testbench in VHDL:
	3 Design Validation:
	4 Compilation and Synthesis:
	5 Timing Analysis:
	6 Post-Synthesis Simulation:
	7 Hardware Generation:

	4 VHDL:
	4:
	1 VHDL Initiation:
	2 Existing Languages:
	3 VHDL Requirements:
	4 The VHDL Language:

	5 Summary:

	Chapter 2 RTL Design with VHDL:
	2:
	1 Basic Structures of VHDL:
	1:
	1 Entities and Architectures:
	2 Entity-Architecture Outline:
	3 Entity Ports:
	4 Signals and Variables:
	5 Logic Value System:
	6 Resolutions:

	2 Combinational Circuits:
	2:
	1 Gate Level Combinational Circuits:
	2 Gate Level Synthesis:
	3 Descriptions by Use of Equations:
	4 Instantiating Other Modules:
	5 Synthesis of Assignment Statements:
	6 Descriptions with Sequential Flow:
	7 Combinational Rules:
	8 Bussing:
	9 Synthesizing Procedural Blocks:

	3 Sequential Circuits:
	3:
	1 Basic Memory Elements at the Gate Level:
	2 Memory Elements Using Procedural Statements:
	3 Flip-flop Synthesis:
	4 Registers, Shifters and Counters:
	5 Synthesis of Shifters and Counters:
	6 State Machine Coding:
	7 State Machine Synthesis:
	8 Memories:

	4 Writing Testbenches:
	5 Synthesis Issues:
	6 VHDL Essential Terminologies:
	6:
	1 Design:
	2 Analysis:
	3 Library:
	4 Standard Packages:
	5 Elaboration:
	6 Event Driven Simulation:
	7 Concurrency:
	8 Concurrent Bodies:
	9 Sequentiality:
	10 Sequential Bodies:
	11 VHDL Objects and Classes:
	12 Real Time:
	13 Delta Delay:
	14 Scheduling:
	15 Resolution:
	16 Code Formal:

	7 Summary:

	Problems:
	Suggested Reading:
	Chapter 3 VHDL Constructs for Structure and Hierarchy Descriptions:
	3:
	1 Basic Components:
	1:
	1 Basic Model:

	2 Component Instantiations:
	2:
	1 Direct Instantiation:
	2 Component Instantiation:

	3 Iterative Networks:
	3:
	1 Multi-bit Vectors:
	2 Multi-instance Generations:
	3 Simplified Generations:

	4 Binding Alternatives:
	5 Association Methods:
	6 Generic Parameters:
	6:
	1 Using Generic Default Values:
	2 Generic Map Aspect:
	3 Generic Association List:

	7 Design Configuration:
	7:
	1 Basic Configuration Declaration:
	2 Incremental Configuration:
	3 Configuring Nested Components:
	4 Indexing Block Configurations:
	5 Instantiating a Design Unit:

	8 Design Simulation:
	9 Summary:

	Chapter 4 Concurrent Constructs for RT Level Descriptions:
	4:
	1 Concurrent Signal Assignments:
	1:
	1 Simple Assignments:
	2 Conditional Signal Assignment:
	3 Selected Signal Assignment:

	2 Guarded Signal Assignments:
	2:
	1 GUARD Signal and Expression:
	2 Block Statement:
	3 Block Statement Ports:
	4 Nested Block Statements:
	5 Guarded Signals:
	6 Timing Disconnections:

	3 Summary:

	Chapter 5 Sequential Constructs for RT Level Descriptions:
	5:
	1 Process Statement:
	1:
	1 Declarative Part of a Process:
	2 Statement Part of a Process:
	3 Process Sensitivity List:
	4 Postponed Processes:
	5 Passive Processes:

	2 Sequential Wait Statements:
	3 VHDL Subprograms:
	3:
	1 Function Definition:
	2 Procedure Definition:
	3 Language Aspects of Subprograms:
	4 Nesting Subprograms:

	4 VHDL Library Structure:
	4:
	1 Creating Libraries:
	2 Using Libraries:

	5 Packaging Utilities and Components:
	5:
	1 A Package of Utilities:
	2 A Package of Components:

	6 Sequential Statements:
	6:
	1 If Statement:
	2 Loop Statement:
	3 Case Statement:
	4 Assertion Statement:

	7 Summary:

	Chapter 6 VHDL Language Utilities and Packages:
	6:
	1 Type Declarations and Usage:
	1:
	1 Enumeration Type for Multi-Value Logic:
	2 Using Real Numbers:
	3 Type Conversions:
	4 Physical Types:
	5 Array Declarations:
	6 File Type and External File I/O:

	2 VHDL Operators:
	2:
	1 Logical Operators:
	2 Relational Operators:
	3 Shift Operators:
	4 Adding Operators:
	5 Sign Operators:
	6 Multiplying Operators:
	7 Other Operators:
	8 Aggregate Operation:

	3 Operator and Subprogram Overloading:
	3:
	1 Operator Overloading:
	2 Subprogram Overloading:

	4 Other Types and Type-Related Issues:
	4:
	1 Subtypes:
	2 Record Types:
	3 Alias Declaration:
	4 Access Types:
	5 Global Objects:
	6 Type Conversions:
	7 Standard Nine-Value Logic:

	5 Predefined Attributes:
	5:
	1 Array Attributes:
	2 Type Attributes:
	3 Signal Attributes:
	4 Entity Attributes:
	5 User-Defined Attributes:

	6 Standard Libraries and Packages:
	6:
	1 STANDARD Package:
	2 TEXTIO Package and ASCII I/O:
	3 Std_logic_1164 Package:
	4 Std_logic_arith Package:

	7 Summary:

	Chapter 7 VHDL Signal Model:
	7:
	1 Characterizing Hardware Languages:
	1:
	1 Timing and Concurrency of Operations:

	2 Signal Assignments:
	2:
	1 Inertial Delay Mechanism:
	2 Transport Delay Mechanism:
	3 Comparing Inertial and Transport:

	3 Concurrent and Sequential Assignments:
	3:
	1 Concurrent Assignments:
	2 Events and Transactions:
	3 Delta Delay:
	4 Sequential Placement of Transactions:

	4 Multiple Concurrent Drivers:
	4:
	1 Resolving between Multiple Driving Values:
	2 Resolutions with Guarded Assignments:
	3 Resolving INOUT Signals:
	4 Standard Resolution:

	5 Summary:

	Chapter 8 Hardware Cores and Models:
	8:
	1 Synthesis Rules and Styles:
	1:
	1 Combinational Cores:
	2 Sequential Cores:
	3 Finite State Machines:

	2 Memory and Queue Structures:
	2:
	1 Generic RAM Core:
	2 Synthesizable Push-Pop Stack:
	3 Synthesizable Circular FIFO:
	4 Dynamic Access Type FIFO:

	3 Arithmetic Cores:
	3:
	1 Array Multiplier:
	2 Carry-Lookahead Adder:
	3 Synthesizable Booth Multiplier:

	4 Components with Separate Control and Data Parts:
	4:
	1 Sequential Multiplier:
	2 von Neumann Computer Model:

	5 Summary:

	Chapter 9 Core Design Test and Testability:
	9:
	1 Issues Related to Design Test:
	1:
	1 Design Test:
	2 Testbench:
	3 Coverage:

	2 Simple Testbenches:
	2:
	1 Combinational Circuit Testing:
	2 Sequential Circuit Testing:

	3 Testbench Techniques:
	3:
	1 Arbitrary Test Data:
	2 Random Test Data:
	3 Applying Synchronized Data:
	4 Synchronized Display of Results:
	5 Displaying Interval Objects:
	6 An Interactive Testbench:
	7 Queued Data Application:
	8 Text File Stimuli and Response:

	4 Complete System Testing:
	4:
	1 Multiplier Testing:
	2 Processor Testing:

	5 Issues Related to Manufacturing Test:
	5:
	1 Manufacturing Test:
	2 Fault Model:
	3 Test Generation:
	4 Fault Simulation:
	5 Fault Coverage:
	6 Testability:

	6 Core Test Support Modules:
	6:
	1 LFSR:
	2 MISR:

	7 Scan Design and Test Application:
	7:
	1 Starting Design:
	2 Scan Insertion:
	3 Scan Testbench:
	4 Top Level Tester:

	8 Memory BIST:
	8:
	1 Memory BIST Architecture:
	2 Test Session:
	3 BIST Controller:
	4 BIST Structure:
	5 BIST Tester:

	9 Summary:

	Chapter 10 Design, Test and Application of a Processor Core:
	10:
	1 Design of SAYEH Processor Core:
	1:
	1 Details of Processor Functionality:
	2 SAYEH Datapath:

	2 SAYEH VHDL Description:
	2:
	1 Data Components:
	2 SAYEH Datapath:
	3 SAYEH Controller:
	4 Complete SAYEH Processor:

	3 SAYEH Testbench / Assembler / Memory Model:
	3:
	1 Top Level VHDL Testbench:
	2 Memory Model:
	3 Assembler:
	4 Memory Read:
	5 Memory Write:
	6 Memory File Handling:
	7 Sorting Test Program:

	4 SAYEH as an Embedded Processor Core:
	4:
	1 Embedded Core Based Design:
	2 Filter Design:
	3 Core Based Architecture:
	4 FIR Program:
	5 FIR Memory and IO Maps:
	6 Filter Software:

	5 Summary:

	Appendixes:
	A: VHDL Keywords:
	B: VHDL Language Grammar:
	C: VHDL Standard Packages:
	C:
	1 STANDARD Package:
	2 TEXTIO Package:

	D: STD_LOGIC_1164 Package:
	E: STD_LOGIC_TEXTIO Package:
	F: STD_LOGIC_ARITH Package:
	G: STD_LOGIC_SIGNED:
	H: STD_LOGIC_UNSIGNED:
	I: math_real Package:
	Index:

